Ein sphärisches Pendel, auch Kugelpendel oder räumliches Pendel, ist ein Pendel, dessen Aufhängung Ausschläge in unterschiedliche Richtungen zulässt. Im Unterschied zum (ebenen) Kreispendel, bei dem die Bewegung der Pendelmasse auf einen vertikalen Kreis beschränkt ist, bewegt sich beim (räumlichen) Kugelpendel die Pendelmasse auf einer Kugelfläche.
Ein Spezialfall des Kugelpendels ist das konische Pendel, auch Kegelpendel, Kreispendel, Rundlaufpendel oder Zentrifugalpendel, bei dem sich die Pendelmasse auf einer horizontalen Kreisbahn bewegt und der Faden deshalb eine Kegelfläche beschreibt.[1]
In der theoretischen Behandlung des sphärischen Pendels wird häufig vereinfachend die Aufhängung als masselos und der Pendelkörper als punktförmig angenommen sowie der Einfluss der Reibung vernachlässigt. Neben der Energieerhaltung ist beim sphärischen Pendel auch die Drehimpulserhaltung von Bedeutung. In der Projektion auf eine horizontale Ebene überstreicht der Pendelfaden daher in gleichen Zeiten gleiche Flächen (siehe Flächensatz).
Eine Anwendung des sphärischen Pendels ist das Foucaultsche Pendel, mit dessen Hilfe ohne Bezug auf Beobachtungen am Himmel die Erdrotation anschaulich nachgewiesen werden kann.
Da sich die Pendelmasse des Kugelpendels auf einer Kugelfläche bewegt, lässt sich seine Bewegung am besten in Kugelkoordinaten beschreiben:
Der Aufhängepunkt ist der Ursprung
Da die Länge
zu bilden, wobei
Die potentielle Energie des Pendels bezüglich des Aufhängepunktes beträgt
und hat ihr Minimum bei
Die Bewegungsgleichungen ergeben sich dann aus den Lagrangegleichungen 2. Art:
Die Lagrange-Gleichungen ergeben (nach Kürzen von
Die zweite Lagrange-Gleichung führt sofort auf
Diese Gleichungen bilden ein System von zwei gekoppelten Differentialgleichungen 2. Ordnung, von denen die zweite allerdings sofort einmal integriert werden kann, wie man an der darüberstehenden Lagrange-Gleichung sieht, aus der sie hervorgegangen ist.
Nach dieser zweiten Lagrange-Gleichung ist der zu
(
Damit lässt sich
Diese Bewegungsgleichung für
Aussagen zu allgemeinen Eigenschaften der Bewegung lassen sich gewinnen, wenn zusätzlich die Konstanz der Gesamtenergie
Mithilfe der Berücksichtigung der Konstanz der Energie kann die Bewegungsgleichung für
Das konische Pendel wird durch die Lösung mit
beschrieben.
Dann ist
Demnach beschreibt das Pendel mit der konstanten Winkelgeschwindigkeit
einen Kegelmantel, wobei
Die Bahnkurve
Der erste Summand auf der rechten Seite ist die Beschleunigung aufgrund der Schwerkraft
Zusammen mit der eingeprägten Kraft kann man schreiben:
Hier zeigt sich, dass die gesamte Beschleunigung
Drückt man diese Gleichung in Kugelkoordinaten aus, ergeben sich wieder die Differentialgleichungen für die Winkel
Bei kleinen Ausschlägen sind die Bewegungen des sphärischen Pendels einfach: Sind die Ausschläge infinitesimal klein, schwingt es wie ein isotroper zweidimensionaler harmonischer Oszillator mit derselben Frequenz
Eine elliptische Schwingung kann als Überlagerung von zwei linearen Schwingungen gleicher Frequenz mit verschieden großen Ausschlägen angesehen werden, die um eine Viertelperiode versetzt und rechtwinklig zueinander entlang der großen und kleinen Halbachse der Ellipse erfolgen. Diese Möglichkeit ist bei infinitesimal kleinen Ausschlägen gegeben, so dass die linearen Schwingungen synchron bleiben und eine raumfeste Ellipse bilden. Bei realen Auslenkungen ist aber beim sphärischen Pendel die Schwingung längs der kleinen Halbachse etwas schneller als die Schwingung längs der großen Halbachse, so dass sie schon über ihren Nullpunkt hinaus ist, wenn die andere erst bei ihrer maximalen Auslenkung, d. h. am Scheitelpunkt der Bahnkurve, ankommt. Zusammengesetzt ergibt sich, dass der Scheitelpunkt auf einem Kreis herumwandert.
Die Bewegungen bei kleinen Ausschlägen werden am einfachsten in kartesischen Koordinaten durch eine Entwicklung nach Potenzen behandelt. Der Ursprung liegt im Aufhängepunkt und die z-Achse ist nach unten gerichtet. Kleine Abweichungen von der Ruhelage sind definiert durch
Berücksichtigt man für infinitesimale Ausschläge nur die Glieder niedrigster Potenz, erhält man zwei entkoppelte Differentialgleichungen für ein Paar harmonischer Oszillatoren gleicher Frequenz
Für Lösungsweg und Lösung siehe harmonischer Oszillator. Dieselben Differentialgleichungen erhält man für kleine Auslenkungen aus der physikalisch begründeten Näherung, dass die Bewegung sich nur in der Ebene
genähert wird (für y-Richtung entsprechend). Die Bahnkurven sind raumfeste Ellipsen mit beliebiger Orientierung der Achsen in der Schwingungsebene, einschließlich der Grenzfälle Strecke und Kreis.
In nächster Näherung treten kubische Glieder auf, über die die beiden Differentialgleichungen auch gekoppelt sind. Eine geschlossene Lösung ist nicht möglich. Eine Näherungslösung geht, der obigen qualitativen Diskussion entsprechend, vom Ansatz einer langsam rotierenden Ellipsenbahn aus. Demnach durchläuft der Pendelkörper eine Ellipse mit den Halbachsen
Die Ellipse rotiert dabei im Sinn des Umlaufs so, dass der Scheitelpunkt bei jedem Umlauf um den Winkel
versetzt wird. Das entspricht einer Drehung der Bahn mit einer Winkelgeschwindigkeit
Diese Präzessionsbewegung ist zum Beispiel eine häufige Störung beim Foucaultschen Pendel, weil sie leicht die Größe der Präzession aufgrund der Erddrehung erreicht.[5]