Winkelbeschleunigung

Winkelbeschleunigung

Physikalische Größe
Name Winkelbeschleunigung
Formelzeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec \alpha
Abgeleitet von Winkelgeschwindigkeit
Größen- und
Einheitensystem
Einheit Dimension
SI rad·s−2 T−2

Die Winkelbeschleunigung (FormelzeichenFehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec \alpha , d. h. Vektor Alpha) bezeichnet die zeitliche Änderung der Winkelgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec \omega eines sich drehenden Objektes.[1] Sie ist eine vektorielle Größe (genauer: ein Pseudovektor). Mathematisch gesprochen ist sie die Ableitung der Winkelgeschwindigkeit nach der Zeit.

In vielen Fällen, bei denen sich die Richtung der Drehachse im Bezugssystem nicht ändert, reicht die skalare Verwendung als Betrag des Vektors aus:

$ {\alpha (t)}={\frac {\mathrm {d} \omega }{\mathrm {d} t}}={\frac {\mathrm {d^{2}} \varphi }{\mathrm {d} t^{2}}} $

mit dem Winkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi .

Die SI-Einheit der Winkelbeschleunigung ist rad/s2 (Radiant pro Sekunde zum Quadrat).

Die Winkelbeschleunigung ist zu unterscheiden von der Tangentialbeschleunigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {a}_{T} eines Punktes, welche die Ableitung der Bahngeschwindigkeit nach der Zeit darstellt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\alpha} = \frac{{a}_{T}}{R}

mit dem Abstand R von der Drehachse; die Tangentialbeschleunigung hat die Einheit Meter/s2.

Zwischen der Winkelbeschleunigung und dem Drehmoment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M besteht beim starren Körper mit dem Trägheitsmoment $ I $ die Beziehung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I \cdot\alpha =M .

In vektorieller Form ist die Änderung des Drehimpulses Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec L gleich dem äußeren Moment (Eulersche Gleichung):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot{\vec L}= \bar{I} \cdot \dot{\vec{\omega}} = \vec M .

Daher spielen Winkelbeschleunigungen in der Technik u. a. eine wichtige Rolle bei Riemenscheiben-Antrieben, Wellen, Elektromotoren, Zentrifugen (z. B. Trommel der Waschmaschine bzw. Wäschetrockner) und bei Rädern von Fahrzeugen. Wenn der Antrieb eine zu hohe Winkelbeschleunigung bewirkt, kann das höchstzulässige Drehmoment überschritten werden, und es kann z. B. zum Durchrutschen eines Antriebsriemens oder zur Beschädigung oder Zerstörung einer Welle kommen.

In der Astronomie hängt die Winkelbeschleunigung eines Planeten um seine Sonne zusammen mit dem Flächensatz (zweites Keplergesetz): nähert sich der Planet dem Zentralkörper, so steigt seine Winkelgeschwindigkeit.

Einzelnachweise

  1. Jürgen Dankert, Helga Dankert: Technische Mechanik: Statik, Festigkeitslehre, Kinematik/Kinetik. 5. Auflage. Vieweg+Teubner, 2009, ISBN 978-3-8351-0177-7, S. 470 (eingeschränkte Vorschau in der Google-Buchsuche).