Eine Radionuklidbatterie, auch Radioisotopengenerator, Isotopenbatterie, Atombatterie oder kurz RTG (für radioisotope thermoelectric generator), wandelt thermische Energie des spontanen Kernzerfalls eines Radionuklids in elektrische Energie um. Sie gewinnt ihre Energie aus radioaktivem Zerfall, somit nicht aus Kernspaltung mit Kettenreaktion, und ist daher von Kernreaktoren zu unterscheiden.
Radionuklidbatterien sind im Allgemeinen klein, kompakt und kommen ohne bewegliche Teile aus. Sie sind autonom, wartungsfrei und können über Jahre bis Jahrzehnte hinweg elektrische Energie liefern.
Medizinische Geräte, die nicht elektrische Energie liefern, sondern in denen für therapeutische Zwecke kurzlebige Radionuklide als Zerfallsprodukt eines langlebigen Mutternuklids erzeugt werden (z. B. Gallium-68-Generator), werden Radionuklidgenerator genannt.
Durch den radioaktiven Zerfall eines Radionuklids entsteht Wärmeenergie. Diese Wärme kann entweder direkt zum Erwärmen verwendet (Radioisotope Heating Unit, RHU) oder mit Hilfe eines Wandlers in elektrische Energie umgesetzt werden. Die verschiedenen verwendbaren Radionuklide sind unten aufgelistet, ebenso die Möglichkeiten, aus der Zerfallswärme elektrische Energie zu gewinnen.
Der Einsatz als Heizelement geschieht heute an Bord von Raumsonden und Rovern, um die elektronischen Einrichtungen vor der Kälte im Sonnenschatten oder im äußeren Sonnensystem zu schützen. Sie kamen zum Beispiel an Bord des Lunochod (Polonium) und Cassini-Huygens (PuO2) zum Einsatz. Eine RHU, wie sie vom U.S. Department of Energy für amerikanische Raumfahrtmissionen bereitgestellt wird, enthält 2,7 g „Brennstoff“ (PuO2). Dieses Plutoniumdioxidpellet ist von einer Hülle aus einer Platin-Rhodiumlegierung umgeben, die sich in einer Isolierung aus Graphit und diese wiederum in einer Wärmedämmung aus demselben Material befindet. Die gesamte RHU ist eine 3,2 cm × 2,6 cm große Kapsel, die bei einer Gesamtmasse von ungefähr 40 g eine thermische Leistung von ca. 1 W liefert.[1] Ein Radionuklid-Heizelement ist also keine Radionuklidbatterie zur Erzeugung von elektrischer Energie.
Beim Einsatz zur Erzeugung von elektrischer Energie werden bis heute nur thermoelektrische Generatoren (siehe auch unten im Kapitel Wandler) eingesetzt. Sie arbeiten ohne bewegte Teile und sind daher verschleißfrei und gut für ihr Einsatzgebiet (sonnenferne, langlebige Raumsonden) geeignet. Der Wirkungsgrad beträgt nur 3 bis 8 Prozent. Die darin zur Energiewandlung eingesetzten Peltierelemente benötigen zur Stromerzeugung einen möglichst großen Temperaturunterschied. Deshalb wird eine Seite durch das radioaktive Präparat erhitzt, die andere Seite strahlt über eine große Fläche mit hohem Emissionsgrad Wärmeleistung in die Umgebung ab und wird so gekühlt.
Alternativen sind im Entwicklungsstadium. Die vielversprechendste davon ist der AMTEC-Generator (Alkalimetall-thermisch-elektrischer Wandler, siehe unten). Er sollte ursprünglich auf der New-Horizons-Raumsonde eingesetzt werden, aus finanziellen Gründen wurde aber ein thermoelektrischer Generator (Typ GPHS-RTG) gewählt.
Gegenüber Kernreaktoren besitzen Radionuklidbatterien auch ein schlechteres Masse-Leistungs-Verhältnis. Der Brennstoffverbrauch ist unabhängig davon, ob elektrische Leistung entnommen wird oder nicht. Bei Radioisotopen mit kurzer Halbwertszeit fällt die Energieabgabe schnell ab. Deshalb muss immer „zu viel“ Brennstoff mitgenommen werden, was höhere Kosten und eine schwerere Abschirmung erfordert.
Bei einem „Advanced Stirling Radioisotope Generator“ (ASRG) wird mit der Wärme des Radioisotops ein Stirlingmotor betrieben, der wiederum einen Generator zur Stromerzeugung antreibt. Der Wirkungsgrad des Stirlingsmotors ist mit ca. 28 Prozent wesentlich größer als der von Thermoelementen, wodurch mit derselben Menge des Radionuklids wesentlich mehr elektrische Energie erzeugt werden kann.
Nachteil des ASRG ist die Verwendung von beweglichen Teilen, die zum Ausfall führen können.
Bisher ist noch kein ASRG im Einsatz.
Damit ein RTG während der Einsatzdauer nicht zu stark an Leistung einbüßt, sollte das verwendete Radionuklid eine Halbwertszeit besitzen, die um den Faktor 2 bis 5 größer als die maximale Betriebszeit ist, für übliche Missionen sind das einige Jahrzehnte. In der Raumfahrt muss das Radionuklid hinreichend viel Energie abgeben, um eine in Relation zu seiner Masse und seinem Volumen große Wärmeabgabe zu erreichen. Andererseits muss eine dünne Abschirmung genügen, damit der RTG nicht zu schwer wird. Deshalb sind Betastrahler wegen der Freisetzung von Bremsstrahlung, Gammastrahler und Nuklide mit hoher Spontanspaltungsrate wegen der Freisetzung von Gammastrahlen und Neutronen nicht gut geeignet.[2] Für eine hinreichend große spezifische Wärmeabgabe sollte die Halbwertszeit nicht unnötig lang sein. Sonst wäre zu viel des Radionuklids nötig, wodurch die RTGs für eine vertretbare Startmasse zu schwer würden,[3] denn jede Vergrößerung der Nutzlast führt zu einer niedrigeren Startgeschwindigkeit der Rakete.[4] Bei angedachten interstellaren Sonden würden Alphastrahler mit bis zu 10.000 Jahren Halbwertszeit verwendet.[5]
Das Radionuklid im RTG ist so angeordnet oder in so geringer Menge vorhanden, dass auch bei Isotopen von Transuranen die kritische Masse nicht erreicht wird. Eine Kernspaltungs-Kettenreaktion ist also ausgeschlossen.
Bei Anwendungen auf der Erde ist die Masse der Abschirmung und die Leistungsdichte oft weniger wichtig, dafür jedoch der Preis des Radionuklids. Deshalb werden auf der Erde auch Betastrahler in RTGs verwendet. Die Zerfallsprodukte (in der ganzen Zerfallsreihe) des gewählten Nuklids dürfen jedoch ebenfalls keine allzu durchdringende Strahlung abgeben. Einige Isotope aus dem atomaren Abfall von Kernkraftwerken können verwendet werden, wie zum Beispiel 90Sr, 137Cs, 144Ce, 106Ru oder 241Am. Zu deren Gewinnung ist allerdings eine Wiederaufarbeitungsanlage nötig. Andere Brennstoffe müssen erst aufwändig erbrütet werden, wozu teilweise sogar mehrere Durchgänge durch eine Wiederaufarbeitungsanlage nötig sind, zum Beispiel 210Po, 238Pu oder 244Cm. 244Cm kostet ungefähr 160.000 US$/g.
Im Folgenden eine Liste möglicher Radionuklide:
Radio- nuklid |
Halbwertszeit (Jahre) |
Zerfall | Brennstoff | Spezifische Leistunga (W/g) |
Abschirmung | Schmelzpunkt des Brennstoffs (°C) |
---|---|---|---|---|---|---|
60Co | 5,27 | β,γ | Metall | 18,9 | schwer | 1480 |
90Sr | 28,78 | β,β | SrTiO3 | 2,31 | schwer | 1910 |
106Ru | 1,02 | β,β | Metall | 70,0 | schwer | 2310 |
137Cs | 30,17 | β,γ | CsCl oder Glas[10] | 0,60 | schwer | 646 / –b[10] |
144Ce | 0,78 | β,β,γ | CeO2 | 62,6 | schwer | 2190 |
147Pm | 2,62 | β | Pm2O3 | 1,23 | mittel | 2130 |
210Po | 0,38 | α | GdPo | 141 | einfach | 1630[10] |
238Pu | 87,7 | α | PuO2 | 0,568 | einfach | 2250 |
242Cm | 0,45 | α | Cm2O3 | 122 | mittel | 1950 |
244Cm | 18,1 | α | Cm2O3 | 2,84 | mittel | 1950 |
241Am | 432,2 | α | AmO2 | 0,112 | mittel | 2000 |
243Am[7] | 7513c | α,β,α | AmO2 | c | 0,010≥ mittel | 2000 |
Zur Energiewandlung kommen mehrere Prinzipien in Frage bzw. wurden erprobt:
In der Raumfahrt dienen RTGs zur Stromversorgung und RHUs zur Heizung. Jenseits der Mars-Umlaufbahn reichte bis vor kurzem (jetzt jenseits von Jupiter[3]) die Strahlung der weit entfernten Sonne nicht mehr aus, mit Solarzellen in praktikabler Größe den Energiebedarf der Sonden zu decken. Hinzu kommt, dass die Gasplaneten (besonders Jupiter) von so starken Strahlungsgürteln umgeben sind, dass die Solarzellen zu schnell degradiert oder zerstört werden. RTGs sind die derzeit einzigen Generatoren, die leicht und zuverlässig genug sind, um in eine Sonde integriert zu werden und die ausreichend lange Strom liefern können. Alle Raumsonden, die bis zum Jahr 2010 zum Planeten Jupiter oder weiter geschickt wurden, wie Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Galileo, Ulysses, Cassini und New Horizons wurden deshalb mit Isotopenbatterien ausgerüstet. Die 2011 gestartete Raumsonde Juno verwendet in der Jupiter-Umlaufbahn Solarzellen. Das ist jedoch nur möglich, weil der geplante polare Orbit der Sonde zum größten Teil außerhalb des Strahlungsgürtels liegt. Der geplante „Jupiter Icy Moons Explorer“, der aus der Europa Jupiter System Mission hervorging, soll ebenfalls Solarzellen verwenden, da sich der Mond Ganymed außerhalb von Jupiters starken Strahlungsgürteln befindet.[13] Der „Jupiter Europa Orbiter“ der aufgegebenen Europa Jupiter System Mission sollte dagegen RTGs verwenden, da sich der Mond Europa dichter beim Jupiter innerhalb der Strahlungsgürtel befindet.[14] Die Raumsonde Rosetta, die den Kometen Tschurjumow-Gerassimenko bis 2016 untersuchte, verwendete auch Solarzellen, obwohl sie sich zwischenzeitlich weiter als der Jupiter von der Sonne entfernte. Der Hauptteil der Mission fand jedoch statt, als der Komet sich auf seiner exzentrischen Umlaufbahn in Perihelnähe (und damit in Sonnennähe) befand. Somit stand während der eigentlichen Mission am Kometen genügend Energie zur Verfügung. Außerdem muss hier berücksichtigt werden, dass die ESA bisher keine RTGs entwickelt hat, jedoch die Entwicklung und den Bau von RTGs erwägt, die in den 2020er Jahren bereitstehen sollen. Als Radionuklid soll voraussichtlich Americium 241Am zum Einsatz kommen.[8]
Die Anfang der 1970er-Jahre von den Apollo-Astronauten auf dem Mond aufgestellten automatischen Messstationen (ALSEP) bezogen ihre Energie ebenfalls von Isotopenbatterien, um kontinuierlich arbeiten zu können.
Der Lander der Chinesischen Mondsonde Chang’e-3 hat einen RTG an Bord, um auch während der etwa 14-tägigen Mondnacht weiterarbeiten zu können.[15]
Bei Militärsatelliten spielt die geringere Größe gegenüber Solarzellen eine Rolle, sowie die größere Unempfindlichkeit gegen Strahlung. Satelliten, die in einem niedrigen Orbit (LEO) kreisen, werden durch die Hochatmosphäre abgebremst, geringe Ausmaße sind hier besonders wichtig.
Russland (bzw. die Sowjetunion) setzte ebenfalls RTGs sowohl bei zivilen als auch bei militärischen Missionen ein, konzentrierte sich in der Raumfahrt aber eher auf Kernreaktoren (RORSAT). Über sowjetische/russische Aktivitäten wurde nur sehr wenig veröffentlicht, die folgende Liste ist daher USA-dominiert. Es kann aber davon ausgegangen werden, dass die UdSSR mindestens genauso häufig RTGs eingesetzt hat.
Jahr | Name | Mission | Anzahl [16] |
Radio- nuklid |
elektrische Leistung je RTG in W (Start) |
---|---|---|---|---|---|
1958 | SNAP-1 | 1958 gestrichen | ? | 144Ce | 500 |
1958 | SNAP-1A | 1958 Bodentest | ? | 125 | |
1961 | SNAP-3 | Transit 4A | 1 | 238Pu | 2,7 |
1961 | SNAP-3 | Transit 4B | 1 | 2,7 | |
1963 | SNAP-9 | Transit 5BN-1 | 1 | 25 | |
1963 | SNAP-9 | Transit 5BN-2 | 1 | 25 | |
1965 | Orion-1[16] | Kosmos 84 | 1 | ? | ? |
1965 | Orion-1[16] | Kosmos 90 | 1 | ? | |
1965 | SNAP-17 | Kommunikationssatellit, gestrichen | ? | 90Sr | 25 |
1966 | SNAP-11 | Surveyor (gestrichen), Bodentest | ? | 242Cm | 25 |
1969 | SNAP-29 | USAF | ? | 210Po | 400 |
1969 | SNAP-19B3 | Nimbus B | 2 | 238Pu | 28,2 |
1969 | SNAP-19B3 | Nimbus III | 2 | 28,2 | |
1969 | SNAP-27 | EALSEP[16] | 1 | 75 | |
1969 | SNAP-27 | ALSEP A1[16] | 1 | 75 | |
1970 | SNAP-27 | ALSEP B[16] | 1 | 75 | |
1971 | SNAP-27 | ALSEP C[16] | 1 | 75 | |
1971 | SNAP-27 | ALSEP A2[16] | 1 | 75 | |
1972 | SNAP-19 | Pioneer 10 | 4 | 40 | |
1972 | SNAP-27 | ALSEP D[16] | 1 | 75 | |
1972[16] | Transit-RTG | Triad 1 | 1 | ? | ? |
1972 | SNAP-27 | ALSEP E[16] | 1 | 238Pu | 75 |
1973 | SNAP-19 | Pioneer 11 | 4 | 40 | |
1975 | SNAP-19 | Viking 1 | 2 | 43 | |
1975 | SNAP-19 | Viking 2 | 2 | 43 | |
1976 | MHW-RTG | LES-8 | 2 | 154 | |
1976 | MHW-RTG | LES-9 | 2 | 154 | |
1977 | MHW-RTG | Voyager 2 | 3 | 158 | |
1977 | MHW-RTG | Voyager 1 | 3 | 158 | |
1989 | GPHS-RTG | Galileo | 2 | 290 | |
1990 | GPHS-RTG | Ulysses | 1 | 280 | |
1996 | RTG-Angel[16] | Mars 96 | 4 | N/A | |
1997 | GPHS-RTG | Cassini-Huygens | 3 | 285[3] | |
2006 | GPHS-RTG | New Horizons | 1 | 240 | |
2011 | MMRTG | Curiosity | 1 | 110[17] | |
2013 | ? | Chang’e-3 | 1 | 238Pu[18] | ? |
Bevor es kleine und langlebige Batterien gab, wurden RTGs auf der Basis von 238Pu für die Versorgung von Herzschrittmachern eingesetzt.[19] Zwischen 1971 und 1976 wurden solche Herzschrittmacher auch in Deutschland implantiert. Sie enthielten 200 mg Plutonium.[20]
RTGs wurden zur Versorgung von Leuchttürmen und Befeuerungen in entlegenen Regionen der UdSSR eingesetzt. Mit etwa 1000 Stück wurden am häufigsten 90Sr-Generatoren vom Typ Beta-M eingesetzt. Sie sind teilweise noch heute in Betrieb.[21]
In den Anfangstagen der Raumfahrt wurden RTGs nur mit geringer Abschirmung gebaut. Die Abschirmung war dazu gedacht, die Instrumente des Satelliten ausreichend vor der Strahlung des Radioisotops zu schützen. Da sowieso Schutzmaßnahmen gegen die kosmische Strahlung vorhanden waren, war das eher einfach zu realisieren. Für einen atmosphärischen Wiedereintritt waren die RTGs der damaligen Zeit nicht ausgelegt, sie waren vielmehr so gebaut, dass sie im Falle eines Unfalles in der Atmosphäre verglühen sollten. Die Brennstoffe hätten sich somit über ein großes Gebiet verteilt. Die daraus resultierende radioaktive Belastung durch eine RTG-Einheit (maximal 8 kg Brennstoff) wurde angesichts der weltweit stattfindenden Kernwaffentests und der dadurch freigesetzten und produzierten Menge radioaktiven Materials (mehrere 1000 Tonnen) für vernachlässigbar gehalten. Unfälle von Satelliten mit Kernreaktoren statt Radionuklidbatterien als Energiequelle, wie die sowjetische Kosmos 954, führten allerdings zu einer weit größeren radioaktiven Belastung.
Im Oktober 1963 trat der Vertrag über das Verbot von Kernwaffenversuchen in der Atmosphäre, im Weltraum und unter Wasser in Kraft. Die radioaktive Strahlung ging weltweit schnell zurück.[22]
Am 21. April 1964 versagte die Able-Star-Oberstufe einer Thor-DSV2A Able-Star[23]-Trägerrakete, die die Satelliten Transit 5BN-3 und Transit 5E-3 in den Weltraum bringen sollte. Die Satelliten traten wieder in die Erdatmosphäre ein, wobei in etwa 50 km Höhe die SNAP-9A-Radionuklidbatterie von Transit 5BN-3 verglühte und das 238Pu mit einer Aktivität von 629 TBq (17.000 Curie) freigesetzt wurde.[24] Es ist bis heute weltweit messbar.
Durch die Wandelung des Bildes der Kerntechnik in den 1960er und 70er Jahren und durch den oben genannten Absturz rückten auch RTGs in den Fokus von Politik und Öffentlichkeit. Von nun an stand maximale Sicherheit an vorderster Stelle. Alle RTGs werden seitdem für einen Wiedereintritt und ein Explodieren der Rakete auf der Startrampe ausgelegt, was das Masse-Leistungs-Verhältnis jedoch drastisch verschlechterte und die Kosten in die Höhe trieb. Im Folgenden nun der Aufbau eines modernen GPHS-RTG (General Purpose Heat Source – Radioisotope Thermoelectric Generator) zur Illustration der Sicherheitsmaßnahmen, sie wurden bei Cassini-Huygens, New Horizons, Galileo und Ulysses eingesetzt:
Die fertige Einheit wiegt ca. 57 kg, davon sind 7,8 kg Brennstoff. Das Sicherheitskonzept funktioniert folgendermaßen: Beim atmosphärischen Wiedereintritt verglühen die Aluminiumradiatoren, die Wärmedämmung schützt das Innere, bis auch sie verglüht. Die Graphitblöcke (Aeroshell) überstehen den Wiedereintritt. Beim Einschlag auf der Oberfläche zerbrechen sie und geben die Graphitzylinder (Graphite Impact Shell) frei. An Land können die Überreste nun lokal geborgen werden, da die Graphitblöcke als Einheit abstürzen. Die Segmentierung soll im Falle einer Beschädigung vor dem Wiedereintritt die Sicherheit erhöhen. Bei einem Einschlag im Meer ist eine Bergung nicht vorgesehen. Die Graphitzylinder gehen unverzüglich unter. Graphit ist sehr korrosionsbeständig. Falls nach mehreren Jahrzehnten die Zylinder beschädigt werden, ist der Brennstoff noch von einer Schicht aus Iridium umgeben, dem korrosionsbeständigsten Element.
Das Funktionieren dieser Sicherheitsmaßnahmen wurde bei Nimbus B und Apollo 13 unter Beweis gestellt. Die Thorad-SLV2G Agena-D Rakete von Nimbus B und der Sekundärnutzlast SECOR 10[25] musste kurz nach dem Start gesprengt werden.[26] Die Brennstoffkapseln der beiden SNAP 19 RTG von Nimbus B hielten trotz der Raketen-Explosion dicht und konnten vor der Vandenberg Air Force Base aus dem Meer geborgen werden.[27] Das 238Pu wurde bei Nimbus 3 wiederverwendet.[26] Als die Mondfähre von Apollo 13 in der Erdatmosphäre nahe der Fidschi-Inseln verglühte, war ein SNAP-27 RTG an Bord und fiel in den Tongagraben. Bei nachträglich durchgeführten Luft- und Wassermessungen konnte kein 238Pu festgestellt werden: Der Behälter hielt dem Aufprall offensichtlich stand.
Wegen der insgesamt großen Menge von radioaktivem Material wird die Anwendung in den Nachfolgestaaten der UdSSR als problematisch gesehen. Dort wurden seit 1976 1000–1500 Radioisotopengeneratoren hergestellt.[28] Sie wurden für Verwendungszwecke wie die Stromversorgung abseits gelegener Leuchttürme oder militärischer Funk-Relaisstationen konstruiert, wobei wegen des hohen Leistungsbedarfs dieser Anwendungen und des geringen Wirkungsgrades der Stromerzeugung große Mengen (bis zu über 100 kg) radioaktiven Materials, meist 90Strontium, eingesetzt wurden. Das 90Sr wurde von den RTGs in der Verbindung Strontiumtitanat oder als Bestandteil von Borsilikatglas verwendet.[6]
Alle diese Geräte stammen aus der Sowjetzeit und haben mittlerweile ihre projektierte Lebensdauer überschritten. Aufgrund der schleppenden Demontage und Entsorgung durch die zuständigen Behörden, der unvollständigen Dokumentation der Typen und Standorte und der meist unzureichenden Sicherung dieser Anlagen kam es mindestens bis 2006 zu Freisetzungen strahlenden Materials durch Korrosion und insbesondere durch Metall-Diebstähle.[29]
Aus Georgien wurde berichtet, dass zwei Holzfäller im Jahr 2001 in Wäldern die liegengelassenen Bestandteile zweier Isotopenbatterien ehemaliger mobiler militärischer Funkanlagen fanden, sich daran in der Nacht wärmten und daraufhin in einem Krankenhaus wegen massiven Merkmalen von Strahlenkrankheit behandelt werden mussten. Entsprechende Meldungen gingen bis an die IAEO. Für die darauf folgende Räumungsaktion waren starke Schutzauflagen erforderlich.[30][31] In Georgien wird von der IAEA und der georgischen Regierung aktiv nach sogenannten Orphan-Strahlern („herrenlose Strahler“) gesucht, da es bereits zu schwerwiegenden Strahlenschäden kam. Neben den 90Sr enthaltenden RTGs sind das vor allem 137Caesium-Quellen aus militärischer und landwirtschaftlicher Nutzung.[28]
Nach Zahlen des US-Energieministeriums gab es Ende 2007 in Russland noch immer über 850 zu entsorgende Radioisotopengeneratoren.[32]