Rapidität (Physik)

Rapidität (Physik)

Die Rapidität ist ein alternatives Maß für Geschwindigkeit, das in der speziellen Relativitätstheorie verwendet wird. Als Formelzeichen wird meist $ \theta $ (kleines Theta) verwendet. Erstmals formuliert wurde der Begriff im Jahr 1911 von Alfred Robb.

Die Rapidität ist definiert als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \theta = \operatorname{artanh}(v/c),

wobei

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v die Geschwindigkeit und
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c die Lichtgeschwindigkeit
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{artanh} die Areatangens-hyperbolicus-Funktion ist.

Die Rapidität misst die Geschwindigkeit in Einheiten der Lichtgeschwindigkeit, die ein beschleunigter Körper ohne relativistische Effekte hätte. Die Rapidität ist daher unbeschränkt (Wertebereich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \theta = (-\infty,+\infty) ), was eine natürlichere Betrachtungsweise darstellt als die Beschränkung der tatsächlichen Geschwindigkeit, die niemals die Lichtgeschwindigkeit überschreiten kann (Wertebereich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v = (-c,+c) ).

Außerdem hat die Rapidität den Vorteil, dass zwei Rapiditäten einfach addiert werden können, während man bei Geschwindigkeiten das relativistische Additionstheorem verwenden muss.[1]

Für nichtrelativistische Geschwindigkeiten nähert sich die Rapidität dem Wert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{v}{c} an:

$ v\ll c\Leftrightarrow v/c\ll 1\Rightarrow \theta \approx v/c. $

In der Teilchenphysik

Anstelle der exakten Formel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \theta = \frac{1}{2} \cdot \ln \left( \frac{1 + \beta}{1 - \beta} \right) = \frac{1}{2} \cdot \ln \left( \frac{E + c p}{E - c p} \right)

mit

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \beta = v/c
  • Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E
  • Impuls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p = |\vec p|

wird in der experimentellen Teilchenphysik oft eine relativ zur Strahlachse definierte Rapidität gemäß

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \theta_{\text{Beamline}} = \frac{1}{2} \cdot \ln \left( \frac{E + c p_L}{E - c p_L} \right)

verwendet, worin der Longitudinalimpuls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_L die Impulskomponente entlang der Strahlachse ist.

Die verwandte Größe der Pseudorapidität ist definiert als[2]

$ \eta ={\frac {1}{2}}\cdot \ln \left({\frac {p+p_{L}}{p-p_{L}}}\right). $

Einzelnachweise

  1. Theoretische Physik, Seite 327 von Matthias Bartelmann, Björn Feuerbacher, Timm Krüger, Dieter Lüst, Anton Rebhan, Andreas Wipf, Springer-Verlag, 2014, abgerufen am 19. Februar 2016.
  2. Theoretische Physik, Seite 372 von Matthias Bartelmann, Björn Feuerbacher, Timm Krüger, Dieter Lüst, Anton Rebhan, Andreas Wipf, Springer-Verlag, 2014, abgerufen am 19. Februar 2016.