Das Rasterkraftmikroskop, auch atomares Kraftmikroskop oder Atomkraftmikroskop (englisch atomic/scanning force microscope; Abkürzungen AFM bzw. SFM, seltener RKM) genannt, ist ein spezielles Rastersondenmikroskop. Es ist ein wichtiges Werkzeug in der Oberflächenchemie und dient zur mechanischen Abtastung von Oberflächen und der Messung atomarer Kräfte auf der Nanometerskala. Die atomaren Kräfte verbiegen eine Blattfeder, an deren Ende sich eine nanoskopisch kleine Nadel befindet. Aus der gemessenen Verbiegung der Feder kann dann die Kraft berechnet werden, die zwischen den Atomen der Oberfläche und der Spitze wirkt. Da zwischen der Probe und der Spitze kein Strom fließt, können auch nichtleitende Proben untersucht werden.
Das Mikroskop wurde 1985 von Gerd Binnig, Calvin Quate und Christoph Gerber entwickelt.[1]
Während der Messung wird eine an einer Blattfeder – dem sogenannten Cantilever – befestigte nanoskopisch kleine Nadel zeilenweise in einem definierten Raster über die Oberfläche einer Probe geführt. Dieser Vorgang wird als Scannen (englisch to scan: rastern, abtasten) bezeichnet. Durch die Oberflächenstruktur der Probe biegt sich dabei die Blattfeder positionsabhängig unterschiedlich weit. Diese Verbiegung bzw. Auslenkung der Spitze kann mit kapazitiven oder typischerweise optischen Sensoren gemessen werden und ist ein Maß für zwischen der Spitze und der Oberfläche wirkende atomare Kräfte. Neben den anziehenden, langreichweitigen Van-der-Waals- und Kapillarkräften treten starke abstoßende Kräfte mit geringer Reichweite auf. Dies sind zum einen quantenmechanisch begründete Abstoßungen aufgrund des Pauli-Prinzips, zum anderen eine Coulomb-Abstoßung der Kernladung, die beim Überlappen der Elektronenhüllen an Bedeutung gewinnt. Die Überlagerung dieser Kräfte wird häufig mit dem Lennard-Jones-Potential beschrieben.
Durch das punktweise Aufzeichnen der Auslenkungen bzw. Kräfte lässt sich wie bei einem Digitalfoto eine Abbildung der Probenoberfläche erzeugen. Jeder einzelne Bildpunkt steht dann für eine bestimmte physikalische oder chemische Messgröße (siehe unten). Die mögliche Auflösung des Bildes wird, wie bei Profilometern, hauptsächlich durch den Krümmungsradius der Spitzen bestimmt, er beträgt in der Regel 10 bis 20 nm, was je nach Rauheit der Probenoberfläche laterale Auflösungen von 0,1 bis 10 nm erlaubt. Dies reicht aus, um im Idealfall sogar einzelne Atome abbilden zu können. Damit hat das Rasterkraftmikroskop zusammen mit dem Rastertunnelmikroskop (RTM bzw. STM) die höchste Auflösung aller mikroskopischen Techniken. Zur exakten Bewegung der Nadel über die Probe dienen Piezostellelemente, mit deren Hilfe Scanbereiche von 1 µm × 1 µm bis zu 150 µm × 150 µm untersucht werden können. Die Scangeschwindigkeit liegt typischerweise zwischen 0,5 und 10 Zeilen pro Sekunde (hin und zurück). Bei normalen Bildauflösungen von 256 × 256 bis 512 × 512 Bildpunkten ergibt sich somit eine Messdauer von ungefähr 1 bis 20 Minuten pro Bild.
Moderne Anlagen verfügen über eine sogenannte „Tip Box“, welche verschiedene Arten von Messspitzen enthalten kann. Das Gerät wechselt dann automatisch zur gewünschten Messspitze. Bei den in der Halbleiterindustrie genutzten AFMs besteht außerdem die Möglichkeit, eine Poloniumquelle zu verwenden, welche Fehlmessungen vermeiden soll, indem es der elektrostatischen Aufladung der Probe und des Messgeräts entgegenwirkt.
Eine Messspitze (englisch tip), die sich auf einem elastisch biegsamen Hebelarm (englisch cantilever) befindet, wird als Messsonde (englisch probe) in geringem Abstand über die Probenoberfläche geführt. Ein piezoelektrischer Scanner bewegt hierfür entweder die Spitze über die Probe oder die Probe unter der feststehenden Spitze. Die Verbiegungen des Hebelarms, hervorgerufen durch Kräfte zwischen Probe (englisch sample) und Spitze, werden hochaufgelöst gemessen, meist indem ein Laserstrahl auf die Spitze gerichtet und der reflektierte Strahl mit einem Photodetektor aufgefangen wird (Lichtzeigerprinzip). Alternativ kann die Messung der Verbiegung des Hebelarms interferometrisch erfolgen. Die Verbiegungen des Hebelarms geben Aufschluss über die Oberflächeneigenschaften der Probe. Ein wichtiges Element eines Rasterkraftmikroskops ist der Controller, der die Bewegung des Scanners und der Probe bzw. Spitze steuert sowie die Signale auswertet. Die Bedienung des Geräts wird erleichtert, wenn die Positionierung des Lasers und der Spitze durch ein lichtoptisches Mikroskop unterstützt werden.
Eine atomar feine Spitze lässt sich dadurch erreichen, indem man ein einzelnes Kohlenstoffmonoxid-Molekül als Spitze verwendet.[2]
Das Rasterkraftmikroskop kann in verschiedenen Betriebsmodi betrieben werden. Die Betriebsmodi können nach drei Systematiken geordnet werden, je nachdem
In allen Kontakt-Messmethoden steht die Messspitze in direktem mechanischem Kontakt mit der zu vermessenden Oberfläche. Zwischen den Elektronenhüllen der Atome an der Oberfläche und der sie berührenden Messspitze entsteht dabei eine starke elektrostatische Abstoßung.
Der Nicht-Kontakt-Modus (englisch non-contact, {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) oder auch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)) gehört zur Familie der dynamischen Anregungsmodi, wobei der Federbalken durch eine externe periodische Kraft zu Schwingungen angeregt wird. Einige Geräte besitzen dazu eigens ein zusätzliches Piezoelement, das direkt beim Federbalken angebracht ist. Speziell im Nicht-Kontakt-Modus wird dabei das Prinzip der Selbsterregung ausgenutzt: Das Schwingungssignal des Federbalkens wird direkt mit einer Phasenverschiebung von 90° wieder an das Anregungselement rückgekoppelt, das heißt, ein geschlossener Schwingkreis entsteht. Damit schwingt der Balken grundsätzlich immer an seiner Resonanzfrequenz. Wenn jetzt zwischen der Spitze des Federbalkens und der zu untersuchenden Probenoberfläche Kräfte auftreten, so ändert sich die Resonanzfrequenz des Schwingkreises. Diese Frequenzverschiebung ist ein Maß für die Kraftwechselwirkung und wird als Regelsignal beim Abrastern der Oberfläche genutzt. Der Federbalken kann auch mit einer festen Frequenz angeregt werden; die Verschiebung der Resonanzfrequenz ergibt dann eine Phasenverschiebung zwischen Anregung und Schwingung. Der Nicht-Kontakt-Modus wird üblicherweise im Vakuum oder auch Ultrahochvakuum eingesetzt und erzielt dort die höchsten Auflösungen im Vergleich zu den anderen Betriebsmodi des Rasterkraftmikroskops.[3] Im Gegensatz zum auch hochauflösenden Rastertunnelmikroskop, welches atomare Auflösung auf elektrisch leitenden Proben erreicht, können hiermit sogar einzelne Atome und Moleküle auf elektrisch isolierenden Oberflächen bildlich dargestellt werden.
Der intermittierende Modus (englisch intermittent contact mode, unter anderem auch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) genannt) gehört auch zur Familie der dynamischen Anregungsmodi. Im Gegensatz zum Nicht-Kontakt-Modus wird in diesem Fall die Anregung extern bei einer festen Frequenz nahe der Resonanzfrequenz des Federbalkens vorgenommen. Wechselwirkungskräfte zwischen der Spitze des Federbalkens und der Probenoberfläche verändern die Resonanzfrequenz des Systems, wodurch sich die Schwingungsamplitude und die Phase (zwischen Anregung und Schwingung) ändern. Meistens wird die Schwingungsamplitude als Regelsignal beim Abrastern der Probe genutzt, das heißt ein Regelkreis versucht die Amplitude konstant zu halten, indem der Abstand, und somit die Kraftwechselwirkung, zwischen Balkenspitze und Probe angepasst wird. Dieser Modus wird üblicherweise bei Messungen unter Umgebungsbedingungen oder auch in Flüssigkeiten genutzt und hat dadurch weite Verbreitung gefunden.
Über die einfache Messung der Oberflächentopographie hinaus können mit dem AFM weitere physikalische Eigenschaften untersucht werden. Bei allen Messprinzipien liegt aber einer der oben aufgeführten Messmodi zu Grunde:
Hier wird das AFM nicht zum Aufnehmen eines Bildes verwendet, sondern um die elasto-plastischen Eigenschaften der Probe an einer vordefinierten Stelle zu untersuchen.
Zur Messung von Kraft-Abstands-Kurven wird der Cantilever einmal oder mehrmals auf die Probe abgesenkt, mit definierter Kraft aufgedrückt und wieder von der Probe entfernt. Dabei wird die auf die Messnadel wirkende Kraft in Abhängigkeit von der Spitzenposition aufgezeichnet. Aus den entstandenen Kurven lassen sich dann Rückschlüsse auf verschiedene Eigenschaften des Materials und der Oberfläche gewinnen wie zum Beispiel über die Adhäsionskräfte und die Elastizität.[7] Um die Messgenauigkeit zu erhöhen und Artefakte z. B. durch Geräusche zu eliminieren, wird normalerweise nicht eine einzelne Kurve, sondern eine Kurvenschar, ein sogenanntes Force Volume, aufgenommen. Aus diesen wird dann eine Durchschnittskurve gebildet und ausgewertet. Die Abbildung rechts zeigt typische Kraft-Abstands-Kurven, die sich bei einer solchen Messung ergeben können. Dabei repräsentiert die blaue Kurve jeweils den Annäherungsprozess, die rote das Zurückziehen der Spitze.
Im Bild rechts zeigt (a) den Idealfall der Messung auf einer rein elastischen Probe. Der horizontale Abschnitt in der rechten Bildhälfte repräsentiert die Nulllinie (Kraftkurven werden normalerweise immer von der Nulllinie aus gelesen), bevor die Spitze in Kontakt mit der Oberfläche kommt. Nähert sich die Spitze der Probe an, kommt es schließlich zu einem Sprung der Spitze auf die Oberfläche, der durch kurzreichweitige attraktive Kräfte hervorgerufen wird. Anschließend steigt die Kraft proportional mit dem weiteren Annähern an (sogenanntes „Kontaktregime“). Nachdem die Bewegung am Maximum umgekehrt wurde, fällt die Kurve genauso linear wieder ab, bleibt aber an der Oberfläche haften, bis die Federkraft des Cantilevers größer als die Adhäsionskräfte der Oberfläche wird und der Federbalken wieder in seine Nullposition springt.
Im Bild rechts schematisiert (b) eine typische Kraftkurve auf vielen Probentypen. Während die Nulllinie und der Sprung in den Kontakt nicht von Bild a abweichen, erkennt man im Kontaktregime, dass die Linie nicht mehr linear ist, sondern zunächst flacher ist und dann steiler wird. Dies kann zum einen durch eine Verhärtung des Materials während des Eindrückens zustande kommen (elasto-plastisches Verhalten) oder zum anderen dadurch, dass bei dünnen Proben mit zunehmender Eindrückung die härtere Probenunterlage die Messung beeinflusst. Aus der Hysterese zwischen den Annäherungs- und Rückzugskurven kann die an der Probe verrichtete Arbeit berechnet werden.
Schließlich demonstriert (c) im Bild das häufigste Artefakt bei Kraft-Abstands-Messungen. Im Unterschied zu den Bildern a und b liegt hier die Rückzugskurve im Kontaktregime oberhalb der Annäherungskurve, das heißt, scheinbar sind die Kräfte beim Zurückziehen der Spitze höher als beim Annähern. Das Artefakt kommt meist durch Nichtlinearitäten der Piezostellelemente im Kraftmikroskop zustande.
Aufgrund dieser und anderer auftretender Artefakte ist sowohl bei der Kalibrierung des Gerätes als auch bei der Auswertung der Kraftkurven ein großes Maß an Sorgfalt und Erfahrung nötig.
Ein ähnliches Verfahren wie bei den Kraft-Abstands-Kurven kann auch verwendet werden, um Bindungskräfte in einzelnen Molekülen wie beispielsweise Proteinen zu messen.[8][9][10] Dabei wird z. B. das zu messende Molekül mithilfe spezieller Moleküle kovalent an einen Probenträger und an die Messspitze gebunden und dann durch zurückziehen der Messspitze gestreckt. Da die Faltung von Proteinen durch Wasserstoffbrücken oder noch schwächere Bindungen zustande kommt, wird dadurch das Molekül zunächst vollständig entfaltet, bevor es letzten Endes zu einem Reißen einer der kovalenten Bindungen im Molekül oder an der Oberfläche kommt. In der zugehörigen Kraft-Abstands-Kurve ist das Entfalten an einer sägezahnartigen Struktur zu erkennen. Ein Verständnis der Messergebnisse ist ohne zumindest grundlegende molekulare Kenntnisse nicht erreichbar.
Die Auswertung der während der Messungen gewonnenen Daten bedarf einer ausführlichen Analyse, da während jeder Messung Störungen auftreten können und die Daten zudem durch systembedingte Fehler überlagert werden. Ein grundlegendes Problem bei allen Abbildungen mit einer endlich großen Messspitze ist, dass die Messdaten nicht die tatsächliche Probenoberfläche darstellen, sondern eine Faltung der Geometrie der Spitze mit der Struktur der Oberfläche[11][12]
Neben den systembedingten Fehlern können während der Messung verschiedene Störungen auftreten:
Bei professionellen AFMs ist gewöhnlich eine Auswertungssoftware im Ansteuerprogramm der Hardware integriert. Die Datenformate sind dabei meist herstellerabhängig, da neben reinen Bilddaten auch die Einstellungen der jeweiligen Messung wie z. B. die Scangeschwindigkeit mitgespeichert werden sollen. Darüber hinaus lassen sich die erstellten Messbilder auch in bekannte Datenformate wie BMP- oder JPEG-Dateien konvertieren. Für Macintosh-Rechner gibt es die auf NIH Image basierende proprietäre Messsoftware Image SXM, die unter anderem die Rohdaten vieler Rasterkraft- und Rastertunnelmikroskope zu verarbeiten vermag. Für GNU/Linux, Microsoft Windows, Mac OS X und FreeBSD ist die freie Auswertesoftware Gwyddion verfügbar, die ebenfalls eine Vielzahl unterschiedlicher Rohdatenformate importieren kann. Sie bietet neben umfangreichen eingebauten Funktionalitäten weiterhin die Möglichkeit durch Module in diversen Programmiersprachen flexibel erweitert zu werden.[14]