Redlich-Kwong-Zustandsgleichung

Redlich-Kwong-Zustandsgleichung

Die Redlich-Kwong-Zustandsgleichung ist eine Zustandsgleichung für reale Gase, die 1949 von Otto Redlich und Joseph Neng Shun Kwong gefunden wurde. Sie verbessert die Van-der-Waals-Gleichung nur unwesentlich, ist jedoch aufgrund ihrer vergleichsweise einfachen Form auch heute noch von Interesse.

Weiterentwicklungen sind die Soave-Redlich-Kwong-Zustandsgleichung und die PSRK-Zustandsgleichung.

Formulierung

Die Redlich-Kwong-Zustandsgleichung lautet:

$ {\begin{aligned}RT&=\left(p+{\frac {a}{{\sqrt {T}}V_{\mathrm {m} }(V_{\mathrm {m} }+b)}}\right)\cdot \left(V_{\mathrm {m} }-b\right)\\\Leftrightarrow p&={\frac {RT}{V_{\mathrm {m} }-b}}-{\frac {a}{{\sqrt {T}}V_{\mathrm {m} }\left(V_{\mathrm {m} }+b\right)}}\end{aligned}} $

mit

  • Kohäsionsdruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a = \frac{0{,}42748 R^2 T_\mathrm c^{2{,}5}}{p_\mathrm c}
  • Kovolumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b = \frac{0{,}08664 R T_\mathrm c} {p_\mathrm c}
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_\mathrm mmolares Volumen
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): TTemperatur
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_\mathrm ckritische Temperatur
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): pDruck
  • $ p_{\mathrm {c} } $ – kritischer Druck
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R – universelle Gaskonstante.

Mit den reduzierten Zustandsgrößen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle\ p_\mathrm r = \frac p{p_\text{c}}\ ,\ V_\mathrm r = \frac{V_\text{m}}{V_\text{m,c}}\ ,\ T_\mathrm r = \frac T{T_\text{c}} lässt sich die Zustandsgleichung in der reduzierten Form schreiben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_\mathrm r = \frac{3 T_\mathrm r}{V_\mathrm r-b'} - \frac 1{b'\sqrt{T_\mathrm r}V_\mathrm r \left( V_\mathrm r + b' \right)}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b' = \sqrt[3]{2} - 1 \approx 0{,}26 .

Anwendungsbereich

Die Redlich-Kwong-Gleichung eignet sich für die Berechnung in Gasphasen, wenn das Verhältnis von Druck zu kritischem Druck kleiner ist als die Hälfte des Verhältnisses von Temperatur zu kritischer Temperatur.:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac p{p_\mathrm c} < 0{,}5 \cdot \frac T{T_\mathrm c}

Gleichbedeutend: der reduzierte Druck darf maximal die halbe Größe der reduzierten Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_\mathrm r besitzen:

$ \Leftrightarrow p_{\mathrm {r} }<0{,}5\cdot T_{\mathrm {r} } $

Eine schlechte Näherung zeigt sich für flüssige Phasen, weshalb die Gleichung nicht für Gas-Flüssigkeits-Gleichgewichte herangezogen werden kann. Dieser Nachteil kann jedoch durch die separate Nutzung besser angepasster Gleichungen ausgeglichen werden.

Literatur

  • Otto Redlich, J. N. S. Kwong: On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. In: Chemical Reviews. Band 44, Nr. 1, 1949, S. 233–244, doi:10.1021/cr60137a013.