Das Sitnikov-Problem ist ein nach dem russischen Mathematiker Kirill Alexandrowitsch Sitnikow (* 1926) benannter Spezialfall des eingeschränkten Dreikörperproblems und beschreibt die Bewegung dreier Himmelskörper unter ihrer gegenseitigen gravitativen Anziehung.
Das System besteht aus 2 Primärkörpern (z. B. Sterne) mit gleicher Masse $ \left(m_{1}=m_{2}={\tfrac {m}{2}}\right) $, die sich auf kreisförmigen oder elliptischen Keplerbahnen um ihren gemeinsamen Schwerpunkt bewegen. Der dritte Körper, der wesentlich kleiner ist als die beiden Primärkörper und dessen Masse daher gleich null gesetzt werden kann $ (m_{3}=0) $, bewegt sich unter dem Einfluss der Primärkörper in einer Ebene, die senkrecht auf der Bahnebene der Primärkörper steht (siehe Bild 1). Der Koordinatenursprung liegt im Schwerpunkt der beiden Primärkörper. Als Einheit der Masse verwendet man die Gesamtmasse der Primärkörper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (m = 1) , als Einheit der Zeit deren Umlaufperiode um den Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (2\pi) und als Einheit der Länge den Radius der Bahn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (a = 1) ; außerdem wird die Gravitationskonstante gleich 1 gesetzt. In so einem System ist die Bewegung des dritten Körpers eindimensional, – er bewegt sich nur entlang der z-Achse.
Zur Ableitung der Bewegungsgleichung (für den Fall von kreisförmigen Bahnen der Primärkörper) bestimmt man zuerst die Gesamtenergie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,E des Systems:
Nach der Zeit abgeleitet ergibt das:
Es gilt (siehe Bild 1):
Und daher folgt als Bewegungsgleichung:
Obwohl es nahezu unmöglich ist, dass sich drei Himmelskörper in einer Sitnikov-Konfiguration anordnen oder bilden, wird das Sitnikov-Problem seit Jahrzehnten intensiv untersucht: obwohl es einen sehr einfachen Fall des Dreikörperproblems darstellt, findet man im elliptischen Sitnikov-Problem trotzdem alle Eigenschaften eines chaotischen Systems, weshalb es sich hervorragend zu allgemeinen Untersuchungen über chaotische Effekte in dynamischen Systemen eignet.