Ein stationärer Zustand $ |\psi \rangle $ ist in der Quantenmechanik eine Lösung der zeitunabhängigen Schrödingergleichung. Er ist ein Eigenzustand des Hamiltonoperators $ H $ des betrachteten physikalischen Systems. Seine Energie $ E $ ist ein Eigenwert dieses Operators. In Dirac-Notation gilt damit für den stationären Zustand die Gleichung:[1]
In Ortsdarstellung hat ein stationärer Zustand die Form:
mit
Das Betragsquadrat $ \textstyle |\langle \mathbf {r} |\psi \rangle |^{2} $ (die für physikalische Messungen ausschlaggebende Wahrscheinlichkeitsverteilung) der Wellenfunktion ist somit unabhängig von der Zeit $ t $.
Allgemeiner werden als stationäre Zustände eines (nicht notwendigerweise abgeschlossenen) Quantensystems die Zustände bezeichnet, für die die Dichtematrix $ {\hat {\rho }} $ des Systems zeitlich konstant ist. Dies schließt die oben genannten Eigenzustände, für diese gilt
ebenso ein, wie die stationären Zustände offener Quantensysteme, deren Dynamik durch eine Lindblad-Mastergleichung
gegeben ist und für die die Zustände im Kern des Liouvilleoperators $ {\mathcal {L}} $ stationär sind, d. h. die Zustände $ \rho _{\mathrm {s} } $ mit $ {\mathcal {L}}(\rho _{\mathrm {s} })=0 $.