Strukturfunktion

Strukturfunktion

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.

In der Kern- und Teilchenphysik treten die Strukturfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_2 bzw. dimensionslos Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_1 , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_2 (und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_3 ) in tiefinelastischen Streuprozessen an Kernen und Nukleonen (Proton und Neutron) auf. Sie geben an, wie stark die Streuung ist, in Abhängigkeit von der dabei zwischen den Streupartnern übertragenen Energie und dem Impuls. Durch ihre Messung lassen sich Rückschlüsse auf die innere Struktur der Stoßpartner ziehen, insbesondere auf die Impulsverteilungen der in den Nukleonen enthaltenen Quarks.

Mithilfe der Strukturfunktionen bei der tief-inelastischen Elektron-Nukleon-Streuung wurde das Partonmodell entwickelt und überprüft, d. h. das Modell für aus Quarks zusammengesetzte Protonen und Neutronen. Außerdem lassen sich der Spin und die elektrische Ladung der Quarks mittels der Strukturfunktionen experimentell bestimmen.

Bei elastischen Streuprozessen sind die elektrischen und magnetischen Formfaktoren die Analoga der Strukturfunktionen.

Experimentelle Bestimmung

Analog zur Rosenbluth-Formel für elastische Streuprozesse gilt für den doppelt differentiellen Wirkungsquerschnitt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{d^2\sigma}{d\Omega\,dE^\prime} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Mott}} \left[ 2W_1(Q^2,\nu)\,\tan^2(\theta/2) + W_2(Q^2,\nu) \right]

dabei sind

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Mott}}} der Mott-Wirkungsquerschnitt
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 der übertragene Viererimpuls, im Beispiel der Elektronstreuung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 = -q^2 = (p_e - p_e^\prime)^2 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_e dem Viererimpuls des Elektrons vor und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_e^\prime nach der Streuung
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \nu = E-E^\prime die übertragene Energie im Laborsystem
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \theta der Streuwinkel
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle W_1(Q^2,\nu)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_2(Q^2,\nu) die Strukturfunktionen.

Misst man nun den Wirkungsquerschnitt bei festen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 und $ \nu $ für verschiedene Streuwinkel und trägt in Analogie zum Rosenbluth-Plot Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tan^2(\theta/2) auf der x-Achse und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \frac{d^2\sigma}{d\Omega\,dE^\prime}\left /\left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Mott}}\right . = 2W_1(Q^2,\nu) \, \tan^2(\theta/2) + W_2(Q^2,\nu)} auf der y-Achse auf, so nimmt der doppelt differentielle Wirkungsquerschnitt folgende lineare Form an:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y(x) = 2 W_1 \cdot x + W_2

mit

  • der Steigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2W_1
  • dem y-Achsenabschnitt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_2 .

Das muss man für viele Werte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \nu wiederholen, um die Strukturfunktionen zu bestimmen.

Dimensionslose Strukturfunktionen

Häufig gibt man statt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_2 die dimensionslosen Strukturfunktionen an:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{alignat}{2} F_1(x,Q^2) & = M \cdot c^2 && \cdot W_1(Q^2,\nu)\\ F_2(x,Q^2) & = \nu && \cdot W_2(Q^2,\nu) \end{alignat}

welche von der Bjorken-Skala Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle x = \frac{Q^2}{2Pq} = \frac{Q^2}{2M\nu}} (auch Bjorken’sche Skalenvariable) abhängen (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M ist die Masse des Targets – zum Beispiel eines Protons – und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P der Viererimpuls des Targets). Diese ist ein Maß für die Inelastizität.

Bei der inelastischen Streuung von Neutrinos an Nukleonen tritt noch eine dritte Strukturfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_3^{\nu N} auf, die explizit die Paritätsverletzung der Neutrinos berücksichtigt.

Strukturfunktionen und Partonmodell

Die dimensionslosen Strukturfunktionen $ F_{1} $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_2 hängen von der Bjorken-Skala Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x ab, aber nur sehr schwach vom Viererimpulsübertrag Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 (Skaleninvarianz). Daraus folgt, dass die Nukleonen aus kleineren punktförmigen Teilchen (Partonen) bestehen.

Bestimmung des Quark-Spins

Die dimensionslosen Strukturfunktionen erfüllen die Callan-Gross-Beziehung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_2(x)=2x\,F_1(x) . Das bedeutet, dass die Partonen Teilchen mit Spin 1/2 sind.

Hätten die Partonen Spin 0, so wäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_1(x)=0 , da diese Strukturfunktion dem magnetischen Formfaktor entspricht.

Bestimmung der elektrischen Ladung der Quarks

Um die drittelzahlige elektrische Ladung der Quarks zu bestimmen, vergleicht man die gemessenen Strukturfunktionen $ F_{2}^{eN}(x) $ aus der Elektron-Nukleon-Streuung und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_2^{\nu N}(x) aus der Neutrino-Nukleon-Streuung miteinander.

  • Elektron-Nukleon-Streuung: Da Elektronen nicht an der starken Wechselwirkung teilnehmen, kann die Streuung von Elektronen an Nukleonen nur an der elektrischen Ladung z der Quarks erfolgen. Die Strukturfunktion muss deshalb von z abhängen:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_2^{eN}(x) = x\cdot\sum_f z_f^2 \left(q_f(x)+\bar q_f(x)\right)

Die Summe läuft über alle relevanten Quarktypen, also u-, d- und s-Quarks. Alle anderen Quarktypen sind zu schwer um beizutragen. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_f gibt die elektrische Ladung des jeweiligen Quarktyps in Einheiten der Elementarladung an. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q_f(x) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar q_f(x) bezeichnen die Impulsverteilungen der Quarks und Antiquarks.

  • Neutrino-Nukleon-Streuung: Da Neutrinos weder an der starken Wechselwirkung, noch an der elektromagnetischen Kraft teilnehmen, geht die elektrische Ladung der Quarks an dieser Stelle nicht in die Strukturfunktion ein:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_2^{\nu N}(x) = x\cdot\sum_f \left(q_f(x) + \bar q_f(x)\right)

Durch Vergleich der Messergebnisse dieser beiden Strukturfunktionen lässt sich die Quarkladung bestimmen. Sie stimmt mit den vorhergesagten drittelzahligen Werten überein.