In der Kern- und Teilchenphysik treten die Strukturfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_2 bzw. dimensionslos Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_1 , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_2 (und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_3 ) in tiefinelastischen Streuprozessen an Kernen und Nukleonen (Proton und Neutron) auf. Sie geben an, wie stark die Streuung ist, in Abhängigkeit von der dabei zwischen den Streupartnern übertragenen Energie und dem Impuls. Durch ihre Messung lassen sich Rückschlüsse auf die innere Struktur der Stoßpartner ziehen, insbesondere auf die Impulsverteilungen der in den Nukleonen enthaltenen Quarks.
Mithilfe der Strukturfunktionen bei der tief-inelastischen Elektron-Nukleon-Streuung wurde das Partonmodell entwickelt und überprüft, d. h. das Modell für aus Quarks zusammengesetzte Protonen und Neutronen. Außerdem lassen sich der Spin und die elektrische Ladung der Quarks mittels der Strukturfunktionen experimentell bestimmen.
Bei elastischen Streuprozessen sind die elektrischen und magnetischen Formfaktoren die Analoga der Strukturfunktionen.
Analog zur Rosenbluth-Formel für elastische Streuprozesse gilt für den doppelt differentiellen Wirkungsquerschnitt:
dabei sind
Misst man nun den Wirkungsquerschnitt bei festen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 und $ \nu $ für verschiedene Streuwinkel und trägt in Analogie zum Rosenbluth-Plot Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tan^2(\theta/2) auf der x-Achse und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \frac{d^2\sigma}{d\Omega\,dE^\prime}\left /\left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Mott}}\right . = 2W_1(Q^2,\nu) \, \tan^2(\theta/2) + W_2(Q^2,\nu)} auf der y-Achse auf, so nimmt der doppelt differentielle Wirkungsquerschnitt folgende lineare Form an:
mit
Das muss man für viele Werte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \nu wiederholen, um die Strukturfunktionen zu bestimmen.
Häufig gibt man statt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_2 die dimensionslosen Strukturfunktionen an:
welche von der Bjorken-Skala Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle x = \frac{Q^2}{2Pq} = \frac{Q^2}{2M\nu}} (auch Bjorken’sche Skalenvariable) abhängen (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M ist die Masse des Targets – zum Beispiel eines Protons – und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P der Viererimpuls des Targets). Diese ist ein Maß für die Inelastizität.
Bei der inelastischen Streuung von Neutrinos an Nukleonen tritt noch eine dritte Strukturfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_3^{\nu N} auf, die explizit die Paritätsverletzung der Neutrinos berücksichtigt.
Die dimensionslosen Strukturfunktionen $ F_{1} $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_2 hängen von der Bjorken-Skala Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x ab, aber nur sehr schwach vom Viererimpulsübertrag Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 (Skaleninvarianz). Daraus folgt, dass die Nukleonen aus kleineren punktförmigen Teilchen (Partonen) bestehen.
Die dimensionslosen Strukturfunktionen erfüllen die Callan-Gross-Beziehung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_2(x)=2x\,F_1(x) . Das bedeutet, dass die Partonen Teilchen mit Spin 1/2 sind.
Hätten die Partonen Spin 0, so wäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_1(x)=0 , da diese Strukturfunktion dem magnetischen Formfaktor entspricht.
Um die drittelzahlige elektrische Ladung der Quarks zu bestimmen, vergleicht man die gemessenen Strukturfunktionen $ F_{2}^{eN}(x) $ aus der Elektron-Nukleon-Streuung und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_2^{\nu N}(x) aus der Neutrino-Nukleon-Streuung miteinander.
Die Summe läuft über alle relevanten Quarktypen, also u-, d- und s-Quarks. Alle anderen Quarktypen sind zu schwer um beizutragen. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_f gibt die elektrische Ladung des jeweiligen Quarktyps in Einheiten der Elementarladung an. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q_f(x) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar q_f(x) bezeichnen die Impulsverteilungen der Quarks und Antiquarks.
Durch Vergleich der Messergebnisse dieser beiden Strukturfunktionen lässt sich die Quarkladung bestimmen. Sie stimmt mit den vorhergesagten drittelzahligen Werten überein.