Umrechnung zwischen den elastischen Konstanten

Umrechnung zwischen den elastischen Konstanten

Die Zusammenhänge zwischen Elastizitätsmoduln umfassen, wie man bei isotropen Materialien aus zwei beliebigen verschiedenen Werkstoffparametern die anderen Steifigkeitsmoduln berechnen kann. Dementsprechend sind in der Elastizitätslehre die elastischen Eigenschaften von linear-elastischen, homogenen, isotropen Materialien schon durch zwei Werkstoffparameter eindeutig bestimmt.

Umrechnung zwischen den elastischen Konstanten

…ergibt sich aus:[1]
Der Modul… $ (K,\,E) $ $ (K,\,\lambda ) $ $ (K,\,G) $ $ (K,\,\nu ) $ $ (E,\,\lambda ) $ $ (E,\,G) $ $ (E,\,\nu ) $ $ (\lambda ,\,G) $ $ (\lambda ,\,\nu ) $ $ (G,\,\nu ) $ $ (G,\,M) $
Kompressionsmodul $ K\, $ $ K $ $ K $ $ K $ $ K $ $ (E+3\lambda )+{\frac {\sqrt {(E+3\lambda )^{2}-4\lambda E}}{6}} $ $ {\tfrac {EG}{3(3G-E)}} $ $ {\tfrac {E}{3(1-2\nu )}} $ $ \lambda +{\tfrac {2G}{3}} $ $ {\frac {\lambda (1+\nu )}{3\nu }} $ $ {\tfrac {2G(1+\nu )}{3(1-2\nu )}} $ $ M-{\tfrac {4G}{3}} $
Elastizitätsmodul $ E\, $ $ E $ $ {\tfrac {9K(K-\lambda )}{3K-\lambda }} $ $ {\tfrac {9KG}{3K+G}} $ $ 3K(1-2\nu )\, $ $ E $ $ E $ $ E $ $ {\tfrac {G(3\lambda +2G)}{\lambda +G}} $ $ {\frac {\lambda (1+\nu )(1-2\nu )}{\nu }} $ $ 2G(1+\nu )\, $ $ {\tfrac {G(3M-4G)}{M-G}} $
1. Lamé-Konstante $ \lambda \, $ $ {\tfrac {3K(3K-E)}{9K-E}} $ $ \lambda $ $ K-{\tfrac {2G}{3}} $ $ {\tfrac {3K\nu }{1+\nu }} $ $ \lambda $ $ {\tfrac {G(E-2G)}{3G-E}} $ $ {\tfrac {E\nu }{(1+\nu )(1-2\nu )}} $ $ \lambda $ $ \lambda $ $ {\tfrac {2G\nu }{1-2\nu }} $ $ M-2G\, $
Schubmodul $ G $ bzw. $ \mu $
(2. Lamé-Konstante)
$ {\tfrac {3KE}{9K-E}} $ $ {\tfrac {3(K-\lambda )}{2}} $ $ G $ $ {\tfrac {3K(1-2\nu )}{2(1+\nu )}} $ $ (E-3\lambda )+{\frac {\sqrt {(E-3\lambda )^{2}+8\lambda E}}{4}} $ $ G $ $ {\tfrac {E}{2(1+\nu )}} $ $ G $ $ {\frac {\lambda (1-2\nu )}{2\nu }} $ $ G $ $ G $
Poissonzahl $ \nu \, $ $ {\tfrac {3K-E}{6K}} $ $ {\tfrac {\lambda }{3K-\lambda }} $ $ {\tfrac {3K-2G}{2(3K+G)}} $ $ \nu $ $ -(E+\lambda )+{\frac {\sqrt {(E+\lambda )^{2}+8\lambda ^{2}}}{4\lambda }} $ $ {\tfrac {E}{2G}}-1 $ $ \nu $ $ {\tfrac {\lambda }{2(\lambda +G)}} $ $ \nu $ $ \nu $ $ {\tfrac {M-2G}{2M-2G}} $
Longitudinalmodul $ M\, $ $ {\tfrac {3K(3K+E)}{9K-E}} $ $ 3K-2\lambda \, $ $ K+{\tfrac {4G}{3}} $ $ {\tfrac {3K(1-\nu )}{1+\nu }} $ $ {\tfrac {G(4G-E)}{3G-E}} $ $ {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}} $ $ \lambda +2G\, $ $ {\tfrac {2G(1-\nu )}{1-2\nu }} $ $ M $


Einzelnachweise

  1. G. Mavko, T. Mukerji, J. Dvorkin: The Rock Physics Handbook. Cambridge University Press, 2003, ISBN 0-521-54344-4 (paperback).