Die Poissonzahl
Wird eine Probe (ein Vollmaterialstück genormter Größe) gedehnt, indem sie an ihren Enden („in Längsrichtung“) auseinandergezogen wird, so kann dies Einfluss auf ihr Volumen haben. Bei einer Probe, deren Material eine Poissonzahl nahe 0,5 hat, bleibt das Volumen (fast) gleich – zieht man sie länger, so wird sie gerade so viel dünner, dass ihr Volumen (praktisch) gleich bleibt (zum Beispiel bei Gummi). Eine Poissonzahl < 0,5 bedeutet, dass das Volumen der Probe zunimmt, wenn man sie auseinanderzieht (sämtliche isotrope Materialien, zum Beispiel Metalle). Die Probe wird zwar dünner, aber nicht so sehr, dass das Volumen gleich bliebe. Eine Poissonzahl < 0 bedeutet, dass die Probe dicker wird, wenn sie auseinandergezogen wird.
Die Poissonzahl ist definiert als linearisiertes negatives Verhältnis aus relativer Änderung der Abmessung quer zur einachsigen Spannungsrichtung
Bei über den Querschnitt konstanter Spannungseinwirkung und homogenen Materialeigenschaften gilt:
wobei
Positive Werte von
Die elastischen Konstanten hängen wechselseitig zusammen. So gilt für linear-elastisches, isotropes Material folgender Zusammenhang zwischen dem Schubmodul
Oftmals findet man auch die Formulierung mit den Lamé-Konstanten
Die relative Volumenänderung
Für die Annahme konstanten Volumens für den einachsigen Spannungszustand ergibt sich ν = 0,5. Typische Werte der Poissonzahl liegen bei Metallen zwischen 0,3 und 0,4 und bei Kunststoffen zwischen 0,4 und 0,5. Diese Werte zeigen, dass sich im Allgemeinen unter Zug/Druck das Volumen und somit auch die Dichte dieser Materialien ändert.
Die Inkompressibilität bleibt nur für infinitesimale Verformungen gewahrt. Außerdem ergeben sich in den Cauchy’schen Konstitutivgleichungen Polstellen. Für die Berechnung von nahezu oder voll inkompressiblen Materialien (z. B. Gummimaterialien, entropieelastischen Materialien, hyperelastischen Materialien) sollten Green’sche Materialmodelle verwendet werden.[3]
Bei einer Poissonzahl kleiner als 0,5 nimmt bei Zugbelastung das Volumen zu, bei Druckbelastung ab, denn dann ist
Bei Werten größer als 0,5 tritt bei Zugbelastung eine Abnahme des Volumens auf. Dies kann bei diversen porösen Materialien beobachtet werden. Für Faserverbundwerkstoffe oder Holz treten in der Regel auch Poissonzahlen größer 0,5 auf, da sich die E-Moduln der drei Achsen (x,y,z) unterscheiden. Dementsprechend treten auch sechs unterschiedliche Poissonzahlen auf, welche die jeweilige Wechselwirkung beschreiben. Zum Beispiel beschreibt νxy die Dehnung entlang der Achse x infolge der Spannung entlang Achse y.[4] Damit bei orthotropen Materialien bei jeglicher Spannung/Belastung das Volumen konstant bleiben würde, müssten alle (6 bei 3D) Poissonzahlen, trotz unterschiedlicher E-Moduln, gleich 0,5 sein.
Vereinzelt sind auch linear-elastische, isotrope Materialien mit negativer Poissonzahl bekannt.[5] Negative Werte ergeben eine Querdehnung anstatt eine Querkontraktion bei Längendehnung. Solche Materialien werden als auxetisch bezeichnet. Beispiele dafür sind gewisse Polymerschäume, Kristalle oder Carbonfasern. Unter Berücksichtigung dieser (seltenen) auxetischen Materialien erweitert sich der Wertebereich der Poissonzahl für isotrope Werkstoffe auf
…ergibt sich aus:[6] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Der Modul… | |||||||||||
Kompressionsmodul |
|||||||||||
Elastizitätsmodul |
|||||||||||
1. Lamé-Konstante |
|||||||||||
Schubmodul (2. Lamé-Konstante) |
|||||||||||
Poissonzahl |
|||||||||||
Longitudinalmodul |
Material | Querdehnzahl |
---|---|
Kork | 0,00 (etwa) |
Beryllium | 0,032 |
Bor | 0,21 |
Schaumstoff | 0,10…0,40 |
Siliciumcarbid | 0,17 |
Beton | 0,20 |
Sand | 0,20…0,45 |
Eisen | 0,21…0,259 |
Glas | 0,18…0,3 |
Silicium (polykristallin) | 0,22[7] |
Si3N4 | 0,25 |
Stahl | 0,27…0,30 |
Lehm | 0,30…0,45 |
Kupfer | 0,35[8] |
Aluminium | 0,35[9] |
Titan | 0,33[8] |
Magnesium | 0,35 |
Nickel | 0,31[8] |
Messing | 0,37 |
PMMA (Plexiglas) | 0,40…0,43 |
Blei | 0,44 |
Gummi | 0,50 |
Faserverbundkunststoff (abhängig von der Faserorientierung) |
0,05…0,55 |
Holz („orthotropisches“ Material) (abhängig von der Faserorientierung) |
0,035…0,67 |
Für metallische Werkstoffe wird häufig ein Wert von
In der Geotechnik und Felsmechanik wird auch der Kehrwert der Poissonzahl als „Poissonzahl“ bezeichnet. Oft wird dann das Zeichen
wobei gilt: