Poisson-Klammer

Poisson-Klammer

Die Poisson-Klammer, benannt nach Siméon Denis Poisson, ist ein bilinearer Differentialoperator in der kanonischen (hamiltonschen) Mechanik. Sie ist ein Beispiel für eine Lie-Klammer, also für eine Multiplikation in einer Lie-Algebra.

Definition

Die Poisson-Klammer ist definiert als

$ \left\{f,g\right\}:=\sum _{k=1}^{s}{\left({\frac {\partial f}{\partial q_{k}}}{\frac {\partial g}{\partial p_{k}}}-{\frac {\partial f}{\partial p_{k}}}{\frac {\partial g}{\partial q_{k}}}\right)} $

mit

  • $ f $ und $ g $ Funktionen der generalisierten Koordinaten $ q_{k} $ und der kanonisch konjugierten Impulse $ p_{k} $
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s Anzahl der Freiheitsgrade.

Allgemein kann die Poisson-Klammer auch für Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G definiert werden, die nicht von generalisierten Koordinaten und kanonischen Impulsen abhängen. Zur Verdeutlichung, auf welche Variablen sich die Poisson-Klammer beziehen soll, werden diese als Indizes an die Klammer geschrieben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{F,G\}_{ab}:=\sum^s_{k=1}\left(\frac{\partial F}{\partial a_k}\frac{\partial G}{\partial b_k}-\frac{\partial F}{\partial b_k}\frac{\partial G}{\partial a_k}\right) .

Eigenschaften

  • Bilinearität
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,\{c_1 f_1+c_2 f_2,g\}=c_1 \{f_1,g\}+ c_2 \{f_2,g\}
  • Antisymmetrie
$ \{f,g\}=-\{g,f\} $, insbesondere Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{f,f\}=0
  • Produktregel
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,\{f,gh\}=\{f,g\}h+g\{f,h\}
  • Jacobi-Identität
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,\{f,\{g,h\}\}+\{h,\{f,g\}\}+\{g,\{h,f\}\}=0
  • Invarianz
Physikalisch liegt es nahe, anzunehmen, dass die Zeitentwicklung einer Eigenschaft eines Systems nicht von den verwendeten Koordinaten abhängen sollte; damit sollten auch die Poisson-Klammern unabhängig von den verwendeten kanonischen Koordinaten sein. Seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\mathbf{q},\mathbf{p}) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\mathbf{Q},\mathbf{P}) zwei verschiedene Sätze von Koordinaten, die durch kanonische Transformationen transformiert werden, so gilt:
$ \{f,g\}_{\mathbf {qp} }=\{f,g\}_{\mathbf {QP} }=\{f,g\} $.
Der Beweis ist länglich, sodass wir ihn hier auslassen.

Fundamentale Poisson-Klammern

Für die kanonische Mechanik wichtig sind die fundamentalen Poisson-Klammern

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left \{ q_k, q_l \right \} = 0
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left \{ p_k, p_l \right \} = 0
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left \{ q_k, p_l \right \} = \delta_{kl} (Kronecker-Delta)

Sie folgen aus den trivialen Beziehungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{alignat}{2} & \frac{\partial q_k}{\partial q_l} = \delta_{kl} \quad && \frac{\partial p_k}{\partial q_l} = 0\\ & \frac{\partial q_k}{\partial p_l} = 0 \quad && \frac{\partial p_k}{\partial p_l} = \delta_{kl} \end{alignat}

Anwendung

  • Mithilfe der Poisson-Klammer kann die Zeitevolution einer beliebigen Observablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f(q_k,p_k,t) eines Hamiltonschen Systems $ H(q_{k},p_{k}) $ ausgedrückt werden (Hamiltonsche Bewegungsgleichungen):
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\mathrm{d}f}{\mathrm{d}t} = \{f,H\} +\frac{\partial f}{\partial t} .
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot{\rho}=\{H,\rho\}.
  • In der Quantenmechanik wird im Rahmen der kanonischen Quantisierung die Poisson-Klammer ersetzt durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle \left(-\frac{{\rm i}}{\hbar}\right) mal den Kommutator:[1]
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{H,f\}\rightarrow-\frac{i}{\hbar}[\hat{H},\hat{f}]
Außerdem werden Observablen durch Operatoren dargestellt. Die oben angeführte Gleichung der Zeitevolution einer Observablen führt so auf die Zeitevolution von Operatoren eines quantenmechanischen Systems mit Hamiltonoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{H} im Heisenberg-Bild. Diese Bewegungsgleichung heißt Heisenbergsche Bewegungsgleichung. Die Liouville-Gleichung findet ihre Entsprechung dabei in der Von-Neumann’schen Bewegungsgleichung.
  • Sowohl die Phasenraumfunktionen der kanonischen Mechanik als auch die Operatoren der Quantenmechanik bilden mit ihren Klammern jeweils eine Lie-Algebra.
  • Allgemein definiert man auf einer symplektischen Mannigfaltigkeit mit symplektischer Form, die in lokalen Koordinaten gegeben ist durch $ \textstyle \omega =\sum _{ij}\omega _{ij}\,\mathrm {d} x^{i}\wedge \mathrm {d} x^{j} $, die Poisson-Klammer der Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g durch:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{f, g\} = \sum_{ij}\omega^{ij}\,\partial_i f\, \partial_j g\,.
  • Koordinatenunabhängig lässt sich die Poisson-Klammer wie folgt darstellen: es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J: T^*M \rightarrow TM der durch $ J^{-1}(v)(w)=\omega (v,w) $ beschriebene Isomorphismus. Weiter sei für eine Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f das Vektorfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_f definiert als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J(\mathrm d f) . Damit gilt dann
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{f, g\} = \omega(X_f, X_g).

Weblinks

Einzelnachweise

  1. Hong-Tao Zhang: A Simple Method of Calculating Commutators in Hamilton System with Mathematica Software, arxiv:quant-ph/0204081