Die Wärmeleitungsgleichung oder Diffusionsgleichung ist eine partielle Differentialgleichung zur Beschreibung der Wärmeleitung. Sie ist das typische Beispiel einer parabolischen Differentialgleichung, beschreibt den Zusammenhang zwischen der zeitlichen und der räumlichen Änderung der Temperatur an einem Ort in einem Körper und eignet sich zur Berechnung instationärer Temperaturfelder. Im eindimensionalen Fall (ohne Wärmequellen) besagt sie, dass die (zeitliche) Ableitung der Temperatur das Produkt aus der zweiten räumlichen Ableitung und der Temperaturleitfähigkeit ist. Dies hat eine anschauliche Bedeutung: Wenn die zweite räumliche Ableitung an einem Ort ungleich null ist, so unterscheiden sich die ersten Ableitungen kurz vor und hinter diesem Ort. Der Wärmestrom, der zu diesem Ort fließt, unterscheidet sich also nach dem Fourierschen Gesetz von dem, der von ihm weg fließt. Es muss sich also die Temperatur an diesem Ort mit der Zeit ändern. Mathematisch sind Wärmeleitungsgleichung und Diffusionsgleichung identisch, statt Temperatur und Temperaturleitfähigkeit treten hier Konzentration und Diffusionskoeffizient auf. Die Wärmeleitungsgleichung lässt sich aus dem Energieerhaltungssatz und dem Fourierschen Gesetz der Wärmeleitung herleiten. Die Fundamentallösung der Wärmeleitungsgleichung wird Wärmeleitungskern genannt.
In homogenen Medien lautet die Wärmeleitungsgleichung
wobei $ u({\vec {x}},t) $ die Temperatur an der Stelle $ {\vec {x}} $ zum Zeitpunkt $ t $, $ \Delta $ der Laplace-Operator bezüglich $ {\vec {x}} $ und die Konstante $ a>0 $ die Temperaturleitfähigkeit des Mediums ist.
Im stationären Fall, wenn also die Zeitableitung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{\partial u}{\partial t} null ist, geht die Gleichung in die Laplace-Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta u = 0 über.
Eine häufig verwendete Vereinfachung berücksichtigt nur eine Raumdimension und beschreibt zum Beispiel die zeitliche Änderung der Temperatur in einem dünnen, relativ dazu langen Stab aus festem Material. Dadurch wird der Laplace-Operator zu einer einfachen zweiten Ableitung:
In Medien mit zusätzlichen Wärmequellen (z. B. durch Joulesche Wärme oder eine chemische Reaktion) lautet die dann inhomogene Wärmeleitungsgleichung
wobei die rechte Seite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f der Quotient aus volumenbezogener Wärmequelldichte (der pro Volumen und Zeit produzierten Wärmemenge) und der volumenbezogenen Wärmekapazität (dem Produkt aus Dichte und massebezogener Wärmekapazität) ist. Im stationären Fall, wenn also die Zeitableitung null ist, geht die Gleichung in die Poisson-Gleichung über.
Es wird die Wärmebilanz an einem kleinen Volumenelement (Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V ) betrachtet. In einem abgeschlossenen System, welches keine Volumenarbeit leistet, ist die im System vorhandene Energie gemäß dem ersten Hauptsatz der Thermodynamik erhalten und es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): dU=\delta Q . Die Kontinuitätsgleichung für die innere Energie kann somit geschrieben werden als:
wobei $ \delta q={\tfrac {\delta Q}{V}} $ die Änderung der Wärmedichte bezeichnet und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{q}=-\lambda \vec \nabla T mit der Wärmeleitfähigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda die Wärmestromdichte ist.
Mit dem Zusammenhang zur Wärmekapazität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C beziehungsweise der spezifischen Wärmekapazität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c über
mit der Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m und entsprechend bei der volumenbezogenen Größe
mit der Dichte $ \rho $ ergibt sich unter der Annahme, dass es keinen Massentransport oder Wärmestrahlungsverluste gibt, sowie der Homogenität des Materials:
Mit der Temperaturleitfähigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a = \tfrac{\lambda}{\rho c} folgt obige Gleichung
Eine spezielle Lösung der Wärmeleitungsgleichung ist die sogenannte Fundamentallösung der Wärmeleitungsgleichung. Diese lautet bei einem eindimensionalen Problem
und bei einem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n -dimensionalen Problem
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle \|\vec{x}\|^2 = \sum_{k=1}^n x_k^2 das Quadrat der euklidischen Norm von $ {\vec {x}} $ ist.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H wird auch als Wärmeleitungskern (oder engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)) bezeichnet. Die funktionale Form entspricht der einer Gauß'schen Normalverteilung mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma^2 = 2at .
Mit Hilfe der oben angegebenen Fundamentallösung der Wärmeleitungsgleichung kann man für das homogene Cauchyproblem der Wärmeleitungsgleichung eine allgemeine Lösungsformel angeben. Dazu stellt man für gegebene Anfangsdaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u_0 zur Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t=0 zusätzlich die Anfangsbedingung
in Form einer Delta-Distribution dar. Die Lösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u(\vec{x},t) des homogenen Anfangswertproblem erhält man für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t>0 durch die Faltung der Fundamentallösung $ H $ mit den gegebenen Anfangsdaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u_0 :
Für das inhomogene Anfangswertproblem mit Null-Anfangsdaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u_0(\vec{x})=0 erhalten wir analog zum homogenen Fall durch die Faltung der Fundamentallösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H mit der gegebenen rechten Seite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f der Differentialgleichung als Lösungsformel:
Die Lösungsformel für das inhomogene Cauchyproblem mit beliebigen Anfangsdaten erhält man aufgrund der Linearität der Wärmeleitungsgleichung durch Addition der Lösung des homogenen Cauchyproblems mit der Lösung des inhomogenen Cauchyproblems mit Null-Anfangsdaten, insgesamt also:
In manchen Fällen kann man Lösungen der Gleichung mit Hilfe des Symmetrieansatzes finden:
Dies führt auf die folgende gewöhnliche Differentialgleichung für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f :
Eine weitere eindimensionale Lösung lautet
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c eine Konstante ist. Mit ihr kann man das Wärmespeicherungsverhalten modellieren, wenn ein Gegenstand (mit einer zeitlich sinusförmigen Temperatur) erhitzt wird.
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u eine Funktion, die die Temperatur eines Festkörpers in Abhängigkeit vom Ort und der Zeit angibt, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u=u(x_1,x_2,x_3,t) . $ u $ ist zeitabhängig, weil sich die thermische Energie mit der Zeit über das Material ausbreitet. Die physikalische Selbstverständlichkeit, dass Wärme nicht aus dem Nichts entsteht, schlägt sich mathematisch im Maximumprinzip nieder: Der Maximalwert (über Zeit und Raum) der Temperatur wird entweder am Anfang des betrachteten Zeitintervalls oder am Rand des betrachteten Raumbereichs angenommen. Diese Eigenschaft gilt allgemein bei parabolischen partiellen Differentialgleichungen und kann leicht bewiesen werden.
Eine weitere interessante Eigenschaft ist, dass selbst wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u zum Zeitpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t=t_0 eine Unstetigkeitsstelle hat, die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u zu jedem Zeitpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t>t_0 stetig im Raum ist.[1] Wenn also zwei Metallstücke verschiedener Temperatur bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t=t_0 fest verbunden werden, wird sich (nach dieser Modellierung) an der Verbindungsstelle schlagartig die mittlere Temperatur einstellen und die Temperaturkurve stetig durch beide Werkstücke verlaufen.