Patterson-Methode: Unterschied zwischen den Versionen

Patterson-Methode: Unterschied zwischen den Versionen

imported>KLBot2
K (Bot: 5 Interwiki-Link(s) nach Wikidata (d:Q905709) migriert)
 
imported>Acky69
 
Zeile 1: Zeile 1:
Die '''Patterson-Methode''' ist ein Verfahren zur Lösung des Phasenproblems der [[Röntgenbeugung]]. Sie geht zurück auf [[Arthur Lindo Patterson|Lindo Patterson]] (1902–1966), der die Methode 1934 einführte.
Die '''Patterson-Methode''' ist ein Verfahren zur Lösung des [[Phasenproblem]]s der [[Röntgenbeugung]]. Sie geht zurück auf [[Arthur Lindo Patterson|Lindo Patterson]] (1902–1966), der die Methode 1934 einführte.


== Beschreibung ==
== Beschreibung ==
Die Patterson-Methode ist definiert als die [[Fourierreihe|Fouriertransformierte]] der [[Betragsquadrat]]e der [[Strukturfaktor]]en <math>F</math>. Lindo Patterson selbst nannte sein Verfahren deshalb die <math>|F|^2</math>-Reihe. Sie liefert dabei nicht direkt die Positionen der Atome in der [[Elementarzelle]], sondern interatomare Vektoren: die Länge des Vektors ist der [[Atomabstand|interatomare Abstand]], die Richtung die interatomare Richtung. Die Stärke des Beugungs[[Reflexion (Physik)|reflexes]] hängt ab von der Elektronenzahl der beiden beteiligten Atome: je größer die Elektronenzahl, desto stärker der Reflex.


Die Patterson-Methode ist als die [[Fourier-Transformation|Fouriertransformierte]] der Quadrate der Strukturfaktorbeträge definiert. Lindo Patterson selbst nannte sein Verfahren deshalb die <math>|F|^2</math>-Reihe. Sie liefert dabei nicht direkt die Positionen der Atome in der [[Elementarzelle]], sondern das Ergebnis der Patterson-Methode sind interatomare Vektoren. Die Länge des Vektors ist der interatomare Abstand, die Richtung die interatomare Richtung. Die Höhe des [[Peak]]s ist abhängig von der Elektronenzahl der beiden beteiligten Atome. Je größer die Elektronenzahl ist, desto höher ist der Peak. In der [[Kristallstrukturanalyse]] wird die Patterson-Methode deshalb bevorzugt eingesetzt, wenn die [[Kristallstruktur]] aus wenigen Schweratomen und vielen Leichtatomen besteht. Die höchsten Peaks geben dann die interatomaren Vektoren zwischen den Schweratomen an. Ist die Lage der Schweratome bestimmt, kann ihr partieller [[Strukturfaktor]] ermittelt und vom errechneten [[Strukturfaktor]] abgezogen werden. Auf diese Weise kann die Lage der übrigen Atome bestimmt werden.
In der [[Kristallstrukturanalyse]] wird die Patterson-Methode deshalb bevorzugt eingesetzt, wenn die [[Kristallstruktur]] aus wenigen Schweratomen und vielen Leichtatomen besteht. Die höchsten Reflexe des [[Diffraktogramm]]s geben dann die interatomaren Vektoren zwischen den Schweratomen an. Ist die Lage der Schweratome bestimmt, so kann ihr partieller Strukturfaktor ermittelt und vom errechneten Strukturfaktor abgezogen werden. Auf diese Weise kann dann auch die Lage der übrigen Leichatome bestimmt werden.


== Definition der Patterson-Funktion ==
== Patterson-Funktion ==
=== Definition ===
:<math>P(U,V,W)= \frac{1}{V_{EZ}} \sum_{h=-\infty}^\infty \sum_{k=-\infty}^\infty \sum_{l=-\infty}^\infty |F(hkl)|^2 \cdot \text{exp}[-2\pi \text{i} (hU + kV + lW)] </math>


<math>P(U,V,W)= \frac{1}{V_{EZ}} \sum_{h=-\infty}^\infty \sum_{k=-\infty}^\infty \sum_{l=-\infty}^\infty |F(hkl)|^2 \cdot \text{exp}[-2\pi \text{i} (hU + kV + lW)] </math><br /><br />
mit
mit<br /><br />
* <math>V_{EZ}</math> = Volumen der [[Elementarzelle]]
<math>V_{EZ}</math> = Volumen der Elementarzelle<br />
* <math>F(hkl)</math> = indizierter Strukturfaktor
<math>F(hkl)</math> = indizierter Strukturfaktor<br />
** <math>h</math>, <math>k</math>, <math>l</math> = [[Laue-Indizes]]
<math>U, V, W</math> = Ortsvektor innerhalb der Elementarzelle<br /><br />
* <math>U, V, W</math> = [[Ortsvektor]] innerhalb der Elementarzelle
* <math>i</math> = [[imaginäre Einheit]].


Nach dem Faltungstheorem der Fouriertransformation kann man die Pattersonfunktion auch schreiben als '''Paarkorrelations-Funktion'''
Nach dem [[Faltungstheorem]] der Fouriertransformation kann man die Pattersonfunktion auch schreiben als '''[[Paarkorrelationsfunktion]]''':


<math>P(U,V,W)=P(\mathbf{U})=\int\limits_{0}^{a}\int\limits_{0}^{b}\int\limits_{0}^{c}\rho(\mathbf{R})\rho(\mathbf{R + U}) \text{d} \mathbf{R}</math><br /><br />
:<math>P(U,V,W) = P(\mathbf{U}) = \int\limits_{0}^{a}\int\limits_{0}^{b}\int\limits_{0}^{c}\rho(\mathbf{R})\rho(\mathbf{R + U}) \text{d} \mathbf{R}</math>


mit <br /><br />
mit
<math>\rho(x)</math> = Elektronendichte am Ort x
* <math>\rho(x)</math> = [[Elektronendichte]] am Ort&nbsp;x.


== Eigenschaften der Patterson-Funktion ==
=== Eigenschaften ===
 
* Wenn die Struktur aus <math>N</math> Atomen besteht, dann sagt die Patterson-Funktion <math>N^2</math> Beugungsreflexe voraus.
* Wenn die Struktur aus <math>N</math> Atomen besteht, dann hat die Patterson-Funktion <math>N^2</math> Peaks.
* Die [[Translationssymmetrie]] der Elektronendichte und der Patterson-Funktion sind gleich. In anderen Worten: beide Elementarzellen sind gleich groß; allerdings hat die Elementarzelle der Elektronendichte <math>N</math> Peaks, die der Patterson-Funktion <math>N^2</math> Peaks.
* Die Translationssymmetrie der Elektronendichte und der Patterson-Funktion sind gleich. In anderen Worten: beide Elementarzellen sind gleich groß. Allerdings hat die Elementarzelle der Elektronendichte <math>N</math> Peaks, die Elementarzelle der Patterson-Funktion <math>N^2</math> Peaks.
* Das Maximum der Patterson-Funktion ist immer am Ursprung (0,0,0) und stellt den interatomaren Vektor eines Atoms mit sich selbst dar.
* Das Maximum der Patterson-Funktion ist immer am Ursprung (0,0,0) und stellt den interatomaren Vektor eines Atoms mit sich selbst dar.
* Die Patterson-Funktion ist immer zentrosymmetrisch, selbst wenn die Kristallsymmetrie und damit die Elektronendichte nicht zentrosymmetrisch ist. Wenn es einen Vektor zwischen den Atomen A und B gibt, dann gibt es auch den umgekehrten Vektor zwischen B und A.
* Die Patterson-Funktion ist immer [[Punktsymmetrie|zentrosymmetrisch]], selbst wenn die Kristallsymmetrie und damit die Elektronendichte ''nicht'' zentrosymmetrisch ist. Wenn es einen Vektor zwischen den Atomen&nbsp;A und&nbsp;B gibt, dann gibt es auch den umgekehrten Vektor zwischen&nbsp;B und&nbsp;A.
* Die Peaks aus der Fouriertransformation der Strukturfaktoren sind viel schärfer als die Patterson-Peaks (aus den Beträgen der Strukturfaktoren).
* Die Patterson-Reflexe aus der Fouriertransformation der ''Betragsquadrate'' der Strukturfaktoren sind viel weniger scharf als die Reflexe aus der Fouriertransformation der Strukturfaktoren (vgl. folgender Abschnitt).


== Harkerschnitte und -linien ==
=== Geschärfte Patterson-Funktion ===
Weil die normale Patterson-Funktion viele unscharfe Reflexe liefert, werden häufig geschärfte Patterson-Funktionen eingesetzt (englisch: ''sharpened Patterson functions''), die zu schärferen Reflexen führen. Meistens beruhen diese Verfahren auf [[normalisiert]]en Strukturfaktoren <math>E</math>. Diese <math>E</math>-Werte sind von den Strukturfaktoren <math>F</math> abgeleitet, so dass sie Punktatomen bzw. Atomen im [[Gleichgewichtszustand|Ruhezustand]] entsprechen; sie enthalten also eine Korrektur der [[thermische Bewegung|thermischen Bewegung]]. Die geschärfte Patterson-Funktion wird dann als Fouriertransformation von <math>\left|E\right|^2</math> oder besser <math>\left|E F\right|</math> berechnet.


Die ursprüngliche Veröffentlichung von Patterson aus dem Jahr 1934 bezog sich auf das [[Triklines Kristallsystem|trikline Kristallsystem]], also die niedrigste Symmetrie. [[David Harker]] erweiterte das Konzept der Patterson-Methode, indem er die Symmetrieoperationen höherer [[Kristallografische Raumgruppe|Raumgruppen]] einbrachte. Dabei stellte er fest, dass man oft nur ein- oder zweidimensionale Fouriertransformationen durchführen muss, um die relevante Strukturinformation zu erhalten. Dies war in Zeiten ohne elektronische Computer sehr vorteilhaft, weil die dreidimensionale Fouriertransformation sehr rechenintensiv ist. Auch heute noch werden bei großen Kristallstrukturen ([[Proteinkristall]]e) die ein- und zweidimensionalen Harkerlinien und Harkerschnitte verwendet.
In der Literatur erscheinen regelmäßig auch andere Methoden, um scharfe Patterson-Reflexe bildlich zu erzeugen.


== Geschärfte Patterson-Funktion ==
== Harkerschnitte und -linien ==
Die ursprüngliche Veröffentlichung von Patterson aus dem Jahr&nbsp;1934 bezog sich auf das [[Triklines Kristallsystem|trikline Kristallsystem]], also die niedrigste [[Symmetrie (Geometrie)|Symmetrie]].


Weil die normale Patterson-Funktion viele unscharfe Peaks liefert, werden häufig geschärfte Patterson-Funktionen (englisch: ''sharpened Patterson functions'') eingesetzt, die zu schärferen Peaks führen. Meistens beruhen diese Verfahren auf normalisierten Strukturfaktoren <math>E</math>. Diese <math>E</math>-Werte sind von den Strukturfaktoren <math>F</math> abgeleitet, so dass sie Punktatomen bzw. Atomen im Ruhezustand entsprechen. Sie enthalten also eine Korrektur der thermischen Bewegung. Die geschärfte Patterson-Funktion wird dann als Fouriertransformation von <math>\left|E\right|^2</math> oder besser <math>\left|E F\right|</math> berechnet.
[[David Harker]] erweiterte das Konzept der Patterson-Methode, indem er die Symmetrieoperationen höherer [[Kristallografische Raumgruppe|Raumgruppen]] einbrachte. Dabei stellte er fest, dass man oft nur ein- oder zweidimensionale Fouriertransformationen durchführen muss, um die relevante Strukturinformation zu erhalten. Dies war in Zeiten ohne elektronische Computer sehr vorteilhaft, weil die dreidimensionale Fouriertransformation sehr rechenintensiv ist.


In der Literatur erscheinen regelmäßig auch andere Methoden, um scharfe Patterson-Peaks zu erzeugen.
Auch heute noch werden bei großen Kristallstrukturen ([[Proteinkristall]]e) die eindimensionalen Harkerlinien und zweidimensionalen Harkerschnitte verwendet.


== Fragmentsuche ==
== Fragmentsuche ==
Wie oben erklärt, eignet sich die Patterson-Methode nur schlecht, wenn die Kristallstruktur ausschließlich aus Leichtatomen besteht, wie z.&nbsp;B. bei [[Organische Chemie|organischen]] Molekülen.


Wie oben erklärt, eignet sich die Patterson-Methode nur schlecht, wenn die Kristallstruktur ausschließlich aus Leichtatomen besteht, wie beispielsweise bei organischen Molekülen. Wenn jedoch die Molekülstruktur bekannt ist, kann die Fragmentsuche angewandt werden. Dabei muss nicht das komplette Molekül bekannt sein, ein großes Molekülfragment ist ausreichend. Diese Molekülstruktur kann man durch quantenchemische Berechnungen erhalten oder von bekannten Molekülfragmenten aus Datenbanken ableiten.
Wenn jedoch die [[Molekülstruktur]] bekannt ist, kann die Fragmentsuche angewandt werden; dabei muss nicht das komplette Molekül bekannt sein, ein großes Molekül[[fragment]] reicht aus. Die Molekül(fragment)struktur kann durch [[quantenchemie|quantenchemisch]]e Berechnungen erhalten oder von bekannten Molekülfragmenten aus Datenbanken abgeleitet sein.


Bei der Fragmentsuche wird zuerst die Patterson-Funktion der Röntgenintensitäten berechnet. Danach wird das Molekülfragment (bzw. die intramolekularen Abstandsvektoren des Fragments) solange gedreht und verschoben bis es optimal in die Patterson-Landkarte passt. Für dieses Verfahren sind verschiedene Computeralgorithmen entwickelt.
Bei der Fragmentsuche wird zuerst die Patterson-Funktion der Röntgenintensitäten berechnet. Danach wird das Molekülfragment (bzw. die intramolekularen Abstandsvektoren des Fragments) solange gedreht und verschoben, bis es optimal in die Patterson-Landkarte passt. Für dieses Verfahren sind verschiedene Computeralgorithmen entwickelt worden.


== Literatur ==
== Literatur ==

Aktuelle Version vom 8. Februar 2022, 09:23 Uhr

Die Patterson-Methode ist ein Verfahren zur Lösung des Phasenproblems der Röntgenbeugung. Sie geht zurück auf Lindo Patterson (1902–1966), der die Methode 1934 einführte.

Beschreibung

Die Patterson-Methode ist definiert als die Fouriertransformierte der Betragsquadrate der Strukturfaktoren $ F $. Lindo Patterson selbst nannte sein Verfahren deshalb die $ |F|^{2} $-Reihe. Sie liefert dabei nicht direkt die Positionen der Atome in der Elementarzelle, sondern interatomare Vektoren: die Länge des Vektors ist der interatomare Abstand, die Richtung die interatomare Richtung. Die Stärke des Beugungsreflexes hängt ab von der Elektronenzahl der beiden beteiligten Atome: je größer die Elektronenzahl, desto stärker der Reflex.

In der Kristallstrukturanalyse wird die Patterson-Methode deshalb bevorzugt eingesetzt, wenn die Kristallstruktur aus wenigen Schweratomen und vielen Leichtatomen besteht. Die höchsten Reflexe des Diffraktogramms geben dann die interatomaren Vektoren zwischen den Schweratomen an. Ist die Lage der Schweratome bestimmt, so kann ihr partieller Strukturfaktor ermittelt und vom errechneten Strukturfaktor abgezogen werden. Auf diese Weise kann dann auch die Lage der übrigen Leichatome bestimmt werden.

Patterson-Funktion

Definition

$ P(U,V,W)={\frac {1}{V_{EZ}}}\sum _{h=-\infty }^{\infty }\sum _{k=-\infty }^{\infty }\sum _{l=-\infty }^{\infty }|F(hkl)|^{2}\cdot {\text{exp}}[-2\pi {\text{i}}(hU+kV+lW)] $

mit

  • $ V_{EZ} $ = Volumen der Elementarzelle
  • $ F(hkl) $ = indizierter Strukturfaktor
  • $ U,V,W $ = Ortsvektor innerhalb der Elementarzelle
  • $ i $ = imaginäre Einheit.

Nach dem Faltungstheorem der Fouriertransformation kann man die Pattersonfunktion auch schreiben als Paarkorrelationsfunktion:

$ P(U,V,W)=P(\mathbf {U} )=\int \limits _{0}^{a}\int \limits _{0}^{b}\int \limits _{0}^{c}\rho (\mathbf {R} )\rho (\mathbf {R+U} ){\text{d}}\mathbf {R} $

mit

Eigenschaften

  • Wenn die Struktur aus $ N $ Atomen besteht, dann sagt die Patterson-Funktion $ N^{2} $ Beugungsreflexe voraus.
  • Die Translationssymmetrie der Elektronendichte und der Patterson-Funktion sind gleich. In anderen Worten: beide Elementarzellen sind gleich groß; allerdings hat die Elementarzelle der Elektronendichte $ N $ Peaks, die der Patterson-Funktion $ N^{2} $ Peaks.
  • Das Maximum der Patterson-Funktion ist immer am Ursprung (0,0,0) und stellt den interatomaren Vektor eines Atoms mit sich selbst dar.
  • Die Patterson-Funktion ist immer zentrosymmetrisch, selbst wenn die Kristallsymmetrie und damit die Elektronendichte nicht zentrosymmetrisch ist. Wenn es einen Vektor zwischen den Atomen A und B gibt, dann gibt es auch den umgekehrten Vektor zwischen B und A.
  • Die Patterson-Reflexe aus der Fouriertransformation der Betragsquadrate der Strukturfaktoren sind viel weniger scharf als die Reflexe aus der Fouriertransformation der Strukturfaktoren (vgl. folgender Abschnitt).

Geschärfte Patterson-Funktion

Weil die normale Patterson-Funktion viele unscharfe Reflexe liefert, werden häufig geschärfte Patterson-Funktionen eingesetzt (englisch: sharpened Patterson functions), die zu schärferen Reflexen führen. Meistens beruhen diese Verfahren auf normalisierten Strukturfaktoren $ E $. Diese $ E $-Werte sind von den Strukturfaktoren $ F $ abgeleitet, so dass sie Punktatomen bzw. Atomen im Ruhezustand entsprechen; sie enthalten also eine Korrektur der thermischen Bewegung. Die geschärfte Patterson-Funktion wird dann als Fouriertransformation von $ \left|E\right|^{2} $ oder besser $ \left|EF\right| $ berechnet.

In der Literatur erscheinen regelmäßig auch andere Methoden, um scharfe Patterson-Reflexe bildlich zu erzeugen.

Harkerschnitte und -linien

Die ursprüngliche Veröffentlichung von Patterson aus dem Jahr 1934 bezog sich auf das trikline Kristallsystem, also die niedrigste Symmetrie.

David Harker erweiterte das Konzept der Patterson-Methode, indem er die Symmetrieoperationen höherer Raumgruppen einbrachte. Dabei stellte er fest, dass man oft nur ein- oder zweidimensionale Fouriertransformationen durchführen muss, um die relevante Strukturinformation zu erhalten. Dies war in Zeiten ohne elektronische Computer sehr vorteilhaft, weil die dreidimensionale Fouriertransformation sehr rechenintensiv ist.

Auch heute noch werden bei großen Kristallstrukturen (Proteinkristalle) die eindimensionalen Harkerlinien und zweidimensionalen Harkerschnitte verwendet.

Fragmentsuche

Wie oben erklärt, eignet sich die Patterson-Methode nur schlecht, wenn die Kristallstruktur ausschließlich aus Leichtatomen besteht, wie z. B. bei organischen Molekülen.

Wenn jedoch die Molekülstruktur bekannt ist, kann die Fragmentsuche angewandt werden; dabei muss nicht das komplette Molekül bekannt sein, ein großes Molekülfragment reicht aus. Die Molekül(fragment)struktur kann durch quantenchemische Berechnungen erhalten oder von bekannten Molekülfragmenten aus Datenbanken abgeleitet sein.

Bei der Fragmentsuche wird zuerst die Patterson-Funktion der Röntgenintensitäten berechnet. Danach wird das Molekülfragment (bzw. die intramolekularen Abstandsvektoren des Fragments) solange gedreht und verschoben, bis es optimal in die Patterson-Landkarte passt. Für dieses Verfahren sind verschiedene Computeralgorithmen entwickelt worden.

Literatur

  • A. L. Patterson: A Fourier Series Method for the Determination of the Components of Interatomic Distances in Crystals. In: Phys. Rev. 46. 1934, 372–376
  • A. L. Patterson: A direct method for the determination of the components of interatomic distances in crystals. In: Z. Krist. (A)90. 1935, 517–542