Nukleosynthese: Unterschied zwischen den Versionen

Nukleosynthese: Unterschied zwischen den Versionen

imported>UvM
(Einleitung: auch r-, s- und p-Prozesse)
 
imported>S.K.
K (+altgriechische Schreibung)
 
Zeile 1: Zeile 1:
[[Datei:Nucleosynthesis periodic table.svg|mini|Dieses Periodensystem zeigt den kosmischen Ursprung jedes Elements]]
[[Datei:Nucleosynthesis periodic table.svg|mini|hochkant=2.25|Quellen der chemischen Elemente in unserem Sonnensystem<br /> ([https://upload.wikimedia.org/wikipedia/commons/3/31/Nucleosynthesis_periodic_table.svg Link für genauen Prozentzahlen durch Überstreichen mit der Maus])]]


Die '''Nukleosynthese''' (von {{laS|''nucleus''}} ‚Kern‘, ‚[[Atomkern]]‘ und von {{grcS}} ''synthesis''‚Aufbau‘, ‚Zusammenfügung‘&nbsp;– auch als '''Nukleogenese''' oder '''Elemententstehung''' bezeichnet) ist die Entstehung von [[Atomkern]]en und damit den [[Chemisches Element|chemischen Elementen]]. Man unterscheidet zwischen der  
Die '''Nukleosynthese''' (von {{laS|nucleus|de=Kern}}, ‚[[Atomkern]]‘ und von {{grcS|σύνθεσις|sýnthesis|de=Aufbau}}, ‚Zusammenfügung‘&nbsp;– auch als '''Nukleogenese''' oder '''Elemententstehung''' bezeichnet) ist die Entstehung von Atomkernen und damit den [[Chemisches Element|chemischen Elementen]]. Man unterscheidet zwischen der
* [[Primordiale Nukleosynthese|''primordialen'' Nukleosynthese]] kurz nach dem [[Urknall]]  
* [[Primordiale Nukleosynthese|''primordialen'' Nukleosynthese]] kurz nach dem [[Urknall]]
* und der ''stellaren'' Nukleosynthese, die hauptsächlich auf [[Kernfusion]], daneben auf [[r-Prozess|r-]], [[s-Prozess|s-]] und [[p-Prozess]]en beruht.
* und der ''stellaren'' Nukleosynthese, die hauptsächlich auf [[Kernfusion]], daneben auf [[r-Prozess|r-]], [[s-Prozess|s-]] und [[p-Prozess]]en beruht.


Die primordiale Nukleosynthese setzte ein, als die Temperatur im Universum so weit gesunken war, dass Deuterium nicht mehr durch hochenergetische Photonen zerstört wurde. Sie endete etwa drei Minuten nach dem Urknall.  
Die primordiale Nukleosynthese setzte ein, als die Temperatur im [[Universum]] so weit gesunken war, dass [[Deuterium]] nicht mehr durch hochenergetische [[Photon]]en zerstört wurde. Sie endete etwa drei Minuten nach dem Urknall.


Die stellare Nukleosynthese findet im Inneren aller [[Stern]]e statt. Im Verlauf der [[Sternentwicklung|Entwicklung eines Sterns]] gibt es charakteristische Kernfusionen; zunächst entsteht [[Helium]], später schwerere Elemente bis zum Eisen, wobei Energie frei wird, die der Stern als Strahlung abgibt (die ihn „zum Stern macht“).
Die stellare Nukleosynthese findet im Inneren aller [[Stern]]e statt. Im Verlauf der [[Sternentwicklung|Entwicklung eines Sterns]] gibt es charakteristische Kernfusionen; zunächst entsteht [[Helium]], später schwerere Elemente bis zum [[Eisen]], wobei Energie frei wird, die der Stern als Strahlung abgibt (die ihn „zum Stern macht“).


Für die Kernfusion zu Elementen mit höherer [[Ordnungszahl]] als [[Eisen]] wird dagegen Energie benötigt. Sie entstehen nicht bei der stellaren Nukleosynthese, sondern am Ende der Lebenszeit des Sterns bei dessen Sternexplosion zur [[Supernova]]; das geschieht aber nur bei Sternen, die dafür groß genug sind. Die schweren Elemente werden dabei durch Protonen- und [[Neutroneneinfang]]sreaktionen in [[p-Prozess|p-]], [[r-Prozess|r-]] und [[s-Prozess]]en erzeugt.
Für die Kernfusion zu Elementen mit höherer [[Ordnungszahl]] als Eisen wird dagegen Energie benötigt. Sie entstehen nicht bei der stellaren Nukleosynthese, sondern am Ende der Lebenszeit des Sterns bei dessen Sternexplosion zur [[Supernova]]; das geschieht aber nur bei Sternen, die dafür groß genug sind. Die schweren Elemente werden dabei durch [[Protonenanlagerung|Protonen]]- und [[Neutroneneinfang]]reaktionen in p-, r- und s-Prozessen erzeugt.


Elemente auf der Erde bis zum Eisen (siehe [[Periodisches System der Elemente|PSE]]) können im Laufe des Lebens unseres Sonnenvorgängers in seinem Inneren entstanden sein; alle Elemente auf der Erde mit höheren Ordnungszahlen als Eisen stammen aus dessen Supernovaexplosion. Noch schwerere, stets kurzlebig radioaktive Elemente entstehen künstlich in [[Kernreaktor]]en und in gezielten Experimenten.
Elemente auf der Erde bis zum Eisen (siehe [[Periodisches System der Elemente|PSE]]) können im Laufe des Lebens unseres Sonnenvorgängers in seinem Inneren entstanden sein; alle Elemente auf der Erde mit höheren Ordnungszahlen als Eisen stammen aus dessen Supernovaexplosion. Noch schwerere, stets radioaktive Elemente entstehen künstlich in [[Kernreaktor]]en und in gezielten Experimenten.


== Entstehungsorte chemischer Elemente: Urknall und Sterne ==
== Entstehungsorte chemischer Elemente: Urknall und Sterne ==
[[Datei:Atomkernbindungsenergien pro Nukleon Hippler 2016.png|miniatur|hochkant=2|Bindungsenergie pro Nukleon in Abhängigkeit von der Nukleonenzahl im Atomkern]]
[[Datei:Atomkernbindungsenergien pro Nukleon Hippler 2016.png|miniatur|hochkant=2|Durchschnittliche Bindungsenergie pro Nukleon in Abhängigkeit von der Nukleonenzahl des Atomkerns]]
Chemische Elemente mit Kernen, die schwerer als Wasserstoff sind, entstehen laufend über Kernreaktionen im Innern von Sternen. Doch noch bevor erste Sterne entstehen konnten, bildeten sich im Rahmen der [[Primordiale Nukleosynthese|primordialen Nukleosynthese]] bereits [[Deuterium]], [[Helium-3]], [[Helium-4]] sowie Spuren von [[Lithium]]-7. Diese Nukleosynthese ist Forschungsgegenstand der [[Nukleare Astrophysik|Nuklearen Astrophysik]]. Sie spielt eine bedeutende Rolle im Gebiet [[Kosmochemie]].
Die Kerne chemischer Elemente schwerer als Wasserstoff entstehen laufend durch Kernreaktionen im Innern von Sternen. Noch bevor erste Sterne entstehen konnten, bildeten sich im Rahmen der [[Primordiale Nukleosynthese|primordialen Nukleosynthese]] bereits [[Deuterium]], [[Helium-3]], [[Helium-4]] sowie Spuren von [[Lithium]]-7. Diese Nukleosynthese ist Forschungsgegenstand der [[Nukleare Astrophysik|Nuklearen Astrophysik]] und spielt auf dem Gebiet der [[Kosmochemie]] eine bedeutende Rolle.


Bei der stellaren Nukleosynthese unterscheidet man zwischen zwei Untergruppen von chemischen Elementen bezüglich ihrer Entstehungsgeschichte:
Bei der stellaren Nukleosynthese unterscheidet man zwischen zwei Untergruppen von chemischen Elementen bezüglich ihrer Entstehungsgeschichte:
* Die erste Gruppe umfasst [[Nuklide]], die durch meist [[exotherm]]e [[Kernfusion|Fusionsreaktionen]] zwischen geladenen Teilchen im Inneren von Sternen aus den leichten Ausgangsmaterialien aufgebaut werden. Aus diesen Reaktionen beziehen die Sterne ihre Energie, da die Bindungsenergie eines Atomkerns pro Nukleon bei Eisen und Nickel ihr absolutes Maximum erreicht (siehe Abbildung). Helium[[Atomkern|kerne]] entstehen in Sternen durch die [[Proton-Proton-Reaktion]] und den [[Bethe-Weizsäcker-Zyklus]]. Ein weiterer wichtiger Einzelprozess ist der [[Drei-Alpha-Prozess]], bei dem [[Kohlenstoff]]-[[Atomkern|Kerne]] (<sup>12</sup>C) entstehen.
* Die erste Gruppe umfasst [[Nuklid]]e, die durch meist [[exotherm]]e [[Kernfusion|Fusionsreaktionen]] zwischen geladenen Teilchen im Inneren von Sternen aus den leichten Ausgangsmaterialien aufgebaut werden. Aus diesen Reaktionen beziehen die Sterne ihre Energie, da die [[Bindungsenergie#Kernphysik|Bindungsenergie eines Atomkerns]] pro [[Nukleon]] bei Eisen und Nickel ihr absolutes Maximum erreicht (siehe Abbildung). Durch die [[Proton-Proton-Reaktion]] und den [[Bethe-Weizsäcker-Zyklus]] entstehen so Helium-4-[[Atomkern|Kerne]] in den Sternen. Durch den [[Drei-Alpha-Prozess]] entstehen in massereicheren Sternen [[Kohlenstoff]]-12-Kerne.
:Weit verbreitet ist die Lehrmeinung, dass dieser Fusionsprozess mit der Bildung des Isotops Eisen-56 ende, da dieses die höchste Bindungsenergie pro Nukleon besitze. Dies ist jedoch nicht der Fall, denn zum einen besitzt das Isotop [[Nickel]]-62 eine geringfügig höhere Bindungsenergie pro Nukleon als Eisen-56, zum anderen sind endotherme Prozesse prinzipiell durchaus möglich. Der eigentliche Grund für die vermehrte Bildung von Eisen-56 gegenüber Nickel-62 und das Enden der Fusionskette liegt vielmehr in den Details des Fusionsprozesses und dem starken Einfluss der [[Photodesintegration]] in diesem Bereich.<ref>{{Literatur | Autor=M. P. Fewell | Titel=The atomic nuclide with the highest mean binding energy | Jahr=1995 | Sammelwerk=American Journal of Physics | Band=63 | Nummer=7| Seiten=653–658 | DOI=10.1119/1.17828}}</ref>
 
* Zur zweiten Gruppe gehören die Elemente schwerer als Eisen. Ihre Bildung ([[Synthese]]) durch Kernfusion erfordert Energiezufuhr. Die nötige Energie stammt zum Beispiel aus Explosionen von Sternen ([[Nova (Stern)|Novae]], [[Supernovae]] u.&nbsp;a.).
:Der exotherme Fusionsprozess endet etwa bei den Elementen [[Nickel]] und Eisen. Die höchste Bindungsenergie erreicht das [[Isotop]] Nickel-62. Einige endotherme Prozesse finden auch im Inneren von Sternen statt und können noch schwerere Kerne erzeugen. Es entsteht weitaus mehr Eisen-56 als Nickel-62, und der eigentliche Grund dafür und das Enden der Fusionskette liegt in den Details des Fusionsprozesses und dem starken Einfluss der [[Photodesintegration]] in diesem Bereich.<ref>{{Literatur | Autor=M. P. Fewell | Titel=The atomic nuclide with the highest mean binding energy | Jahr=1995 | Sammelwerk=American Journal of Physics | Band=63 | Nummer=7| Seiten=653–658 | DOI=10.1119/1.17828 |Sprache=en }}</ref>
* Zur zweiten Gruppe gehören die Elemente schwerer als Eisen. Ihre Bildung ([[Synthese]]) durch Kernfusion erfordert Energiezufuhr. Die nötige Energie stammt unter anderem aus Sternen-Explosionen ([[Nova (Stern)|Novae]], [[Supernovae]] u.&nbsp;a.), der Verschmelzung von [[Neutronenstern]]en<ref>{{Literatur |Autor=E. Pian, P. D’Avanzo, S. Benetti, M. Branchesi, E. Brocato |Titel=Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger |Sammelwerk=Nature |Band=551 |Nummer=7678 |Datum=2017-11 |ISSN=0028-0836 |DOI=10.1038/nature24298 |Seiten=67–70 |Sprache=en |Online=http://www.nature.com/articles/nature24298 |Abruf=2019-11-21}}</ref><ref>{{Literatur |Autor=Darach Watson, Camilla J. Hansen, Jonatan Selsing, Andreas Koch, Daniele B. Malesani |Titel=Identification of strontium in the merger of two neutron stars |Sammelwerk=Nature |Band=574 |Nummer=7779 |Datum=2019-10 |ISSN=0028-0836 |DOI=10.1038/s41586-019-1676-3 |Seiten=497–500 |Sprache=en |Online=http://www.nature.com/articles/s41586-019-1676-3 |Abruf=2019-11-21}}</ref> und radioaktiven Prozessen in [[AGB-Stern]]en.<ref>{{Literatur |Autor=Maria Lugaro, Falk Herwig, John C. Lattanzio, Roberto Gallino, Oscar Straniero |Titel=s ‐Process Nucleosynthesis in Asymptotic Giant Branch Stars: A Test for Stellar Evolution |Sammelwerk=The Astrophysical Journal |Band=586 |Nummer=2 |Datum=2003-04 |ISSN=0004-637X |DOI=10.1086/367887 |Seiten=1305–1319 |Sprache=en |Online=http://stacks.iop.org/0004-637X/586/i=2/a=1305 |Abruf=2019-11-21}}</ref>


=== Urknall, Sternentstehung und -entwicklung ===
=== Urknall, Sternentstehung und -entwicklung ===
[[Datei:Orion Nebula - Hubble 2006 mosaic 18000.jpg|miniatur|Orionnebel: Hier entstehen aus Wasserstoffgaswolken junge, heiße Sterne; der Prozess der Fusion von Wasserstoff zu Helium setzt ein]]
[[Datei:Universe expansion-de.svg|miniatur|hochkant=1.4|Expansion des Universums nach dem [[Urknall|Ur&shy;knall]] und der primordialen Nukleosynthese]]
[[Datei:Universe expansion-de.png|miniatur|Expansion des Universums nach dem [[Urknall]] und der primordialen Nukleosynthese]]
Innerhalb der ersten drei Minuten nach dem [[Urknall]] entstanden bei hohen Temperaturen und Dichten vor allem [[Wasserstoff]](-Kerne) und [[Helium]](-Kerne) (siehe [[primordiale Nukleosynthese]]). Aus den  Wasserstoff- und Helium-Gaswolken bildeten sich durch Anziehungskräfte erste Sterne. In diesen Sternen entstanden durch Fusionsprozesse schwerere Elemente.
Etwa 380.000 Jahre nach dem [[Urknall]] entstanden bei hohen Temperaturen und Dichten vor allem [[Wasserstoff]](-Kerne) und [[Helium]](-Kerne)(siehe [[primordiale Nukleosynthese]]). Aus den  Wasserstoff- und Helium-Gaswolken bildeten sich durch Anziehungskräfte erste Sterne. In diesen Sternen entstanden durch Fusionsprozesse schwerere Elemente.


=== Synthese leichter Nuklide in jungen Sternen ===
=== Synthese leichter Nuklide in jungen Sternen ===
[[Datei:Orion Nebula - Hubble 2006 mosaic 18000.jpg|miniatur|hochkant=1.4|'''Orionnebel:''' Hier entstehen aus Wasser&shy;stoff&shy;gas&shy;wolken junge, heiße Sterne. Die Fusion von Wasserstoff zu Helium setzt ein.]]
Der Wasserstoffvorrat der [[Sonne]] und der anderer Sterne erschöpft sich mit der Zeit. Wenn ein Stern in seinem Zentralbereich den größten Teil des vorhandenen Wasserstoffs zu Helium „gebrannt“ hat, endet diese erste Brennphase. Der Stern kann dann seinen inneren Druck nicht mehr aufrechterhalten und fällt unter dem Einfluss der eigenen [[Gewichtskraft|Schwerkraft]] in sich zusammen. Ab einer bestimmten Mindestmasse werden durch die Verdichtung und gleichzeitige Erhitzung Bedingungen erreicht, unter denen weitere Fusionsprozesse in Gang kommen, zunächst das so genannte [[Drei-Alpha-Prozess|Heliumbrennen]]. Je nach Ausgangsmasse setzen noch weitere Fusionsprozesse ein, siehe dazu [[Stern#Letzte Brennphasen|Stern (Letzte Brennphasen)]].
Der Wasserstoffvorrat der [[Sonne]] und der anderer Sterne erschöpft sich mit der Zeit. Wenn ein Stern in seinem Zentralbereich den größten Teil des vorhandenen Wasserstoffs zu Helium „gebrannt“ hat, endet diese erste Brennphase. Der Stern kann dann seinen inneren Druck nicht mehr aufrechterhalten und fällt unter dem Einfluss der eigenen [[Gewichtskraft|Schwerkraft]] in sich zusammen. Ab einer bestimmten Mindestmasse werden durch die Verdichtung und gleichzeitige Erhitzung Bedingungen erreicht, unter denen weitere Fusionsprozesse in Gang kommen, zunächst das so genannte [[Drei-Alpha-Prozess|Heliumbrennen]]. Je nach Ausgangsmasse setzen noch weitere Fusionsprozesse ein, siehe dazu [[Stern#Letzte Brennphasen|Stern (Letzte Brennphasen)]].


[[Thermonukleare Reaktion|Thermonukleare]] Kernfusionsreaktionen hängen sehr stark von der Temperatur im Inneren des Sterns ab. Daher bestimmt die Masse des Sterns, in welchem Maß die schwereren Elemente im Laufe des Sternenlebens gebrannt werden können. Leichtere Sterne kommen durch den geringeren Druck im Inneren oft über das Heliumbrennen nicht hinaus, Sterne wie unsere Sonne produzieren hauptsächlich die leichteren Elemente bis zum Kohlenstoff, während Sterne, die deutlich schwerer sind als die Sonne, sämtliche Elemente bis hin zum [[Eisen]] erzeugen können. Hier endet die positive Energiebilanz der Fusionsreaktionen. Der innere Kern solcher Riesensterne besteht dann aus Eisen, ihm folgen die anderen Elemente in Schichten nach außen, ein Wasserstoff-Helium-Gemisch bildet die äußerste Schicht.  
[[Thermonukleare Reaktion|Thermonukleare]] Kernfusionsreaktionen hängen sehr stark von der Temperatur im Inneren des Sterns ab. Daher bestimmt die Masse des Sterns, in welchem Maß die schwereren Elemente im Laufe des Sternenlebens gebrannt werden können. Leichtere Sterne kommen durch den geringeren Druck im Inneren oft über das Heliumbrennen nicht hinaus, Sterne wie unsere Sonne produzieren hauptsächlich die leichteren Elemente bis zum Kohlenstoff, während Sterne, die deutlich schwerer sind als die Sonne, sämtliche Elemente bis hin zum [[Eisen]] erzeugen können. Hier endet die positive Energiebilanz der Fusionsreaktionen. Der innere Kern solcher Riesensterne besteht dann aus Eisen, ihm folgen die anderen Elemente in Schichten nach außen, ein Wasserstoff-Helium-Gemisch bildet die äußerste Schicht.


Dass Sterne in ihrem Aufbau zuletzt einem Zwiebelschalenmuster entsprechen, erkannte in den 1940er Jahren [[Fred Hoyle]]. Seine Berechnungen zeigten, dass Sterne mit der fortschreitenden Aufzehrung ihres nuklearen Brennstoffs in ihrem Aufbau zunehmend uneinheitlicher werden und dass dies wieder höhere Temperaturen und Dichten in ihrem Inneren bedingt. Das Modell stimmt überraschend gut mit den gemessenen [[Elementhäufigkeit]]en im [[Universum]] überein. Wie oft sich der Zyklus aus Kontraktion, Aufheizung und Entzündung neuen, schwereren Brennstoffs wiederholt, hängt nur von der Masse des Sterns ab. Die Sternentwicklung treibt die Nukleosynthese an, und gleichzeitig treibt die Nukleosynthese wieder die Sternentwicklung.
Dass Sterne in ihrem Aufbau zuletzt einem Zwiebelschalenmuster entsprechen, erkannte in den 1940er Jahren [[Fred Hoyle]]. Seine Berechnungen zeigten, dass Sterne mit der fortschreitenden Aufzehrung ihres nuklearen Brennstoffs in ihrem Aufbau zunehmend uneinheitlicher werden und dass dies wieder höhere Temperaturen und Dichten in ihrem Inneren bedingt. Das Modell stimmt überraschend gut mit den gemessenen [[Elementhäufigkeit]]en im [[Universum]] überein. Wie oft sich der Zyklus aus Kontraktion, Aufheizung und Entzündung neuen, schwereren Brennstoffs wiederholt, hängt nur von der Masse des Sterns ab. Die Sternentwicklung treibt die Nukleosynthese an, und gleichzeitig treibt die Nukleosynthese wieder die Sternentwicklung.
Zeile 39: Zeile 40:


==== Synthese schwerer Nuklide in Supernovae ====
==== Synthese schwerer Nuklide in Supernovae ====
[[Datei:EtaCarinae-HST-1995-09.jpg|miniatur|Gegen Ende ihrer Leuchtphase erzeugen schwere Sterne auch schwerere [[Atomkern]]e und stoßen das Material in Form von Wolken aus, hier: ''Homunkulusnebel'' um den extrem massereichen Stern [[eta Carinae]], entstanden durch Eruptionen vor 100 bis 150 Jahren.]]
[[Datei:EtaCarinae-HST-1995-09.jpg|miniatur|hochkant=1.4|Der '''Homunkulusnebel''' ent&shy;stand vor 100 bis 150 Jahren durch Eruptionen des extrem massereichen Sterns [[Eta Carinae]]. Schwere Sterne erzeugen ge&shy;gen Ende ihrer Leucht&shy;phase schwe&shy;rere [[Atomkern]]e und stoßen diese in Form von Wolken aus.]]
Hatte der Stern anfänglich eine Masse von mehr als acht Sonnenmassen, schreitet die Kontraktion besonders schnell voran, der Stern kollabiert. Bei dieser schnellen Verdichtung wird die [[Gravitation]]senergie also sehr schnell freigesetzt, erhöht die Temperatur stark und bewirkt damit eine explosionsartige Ausweitung der möglichen Kernreaktionen im gesamten Sternvolumen. Innerhalb von ein bis zwei Tagen nimmt die Helligkeit des bis dahin unscheinbaren Sterns so stark zu, dass er, wie von [[Tycho Brahe]] 1572 beschrieben, heller als alle Planeten erscheint und selbst am Tag mit bloßem Auge beobachtbar ist: eine [[Supernova]]. Dieser  [[Leuchtkraft]]ausbruch dauert wenige Tage. Der der äußere Teil der Sternenmaterie, manchmal mehr als die Hälfte der gesamten Masse, wird in den interstellaren Raum geschleudert.
Hatte der Stern anfänglich eine Masse von mehr als 8 Sonnenmassen, schreitet die Kontraktion besonders schnell voran, der Stern kollabiert. Bei dieser schnellen Verdichtung wird die [[Gravitation]]senergie also sehr schnell freigesetzt, erhöht die Temperatur stark und bewirkt damit eine explosionsartige Ausweitung der möglichen Kernreaktionen im gesamten Sternvolumen. Innerhalb von ein bis zwei Tagen nimmt die Helligkeit des bis dahin unscheinbaren Sterns so stark zu, dass er, wie von [[Tycho Brahe]] 1572 beschrieben (siehe [[SN 1572]]), heller als alle Planeten erscheint und selbst am Tag mit bloßem Auge beobachtbar ist: eine [[Supernova]]. Dieser  [[Leuchtkraft]]ausbruch dauert wenige Tage. Der äußere Teil der Sternenmaterie, manchmal mehr als die Hälfte der gesamten Masse, wird in den interstellaren Raum geschleudert.


In dieser explosiven Materiewolke entsteht die zweite Gruppe, die Elemente, die schwerer als Eisen sind. Diese Reaktionen werden vor allem von [[Neutron]]en bewirkt, die unter den im Sterninneren herrschenden Bedingungen freigesetzt werden und als ungeladene Teilchen vielfältige Kernreaktionen auslösen können. Atomkerne fangen in schnell aufeinander folgenden Schritten etliche Neutronen ein ([[r-Prozess]]). In nachfolgenden [[Betazerfall|Betazerfällen]] entstehen dann aus den neutronenreichen Kernen stabile [[Nuklid]]e mit erhöhter Protonenzahl, die schweren Elemente jenseits des Eisens.
In dieser explosiven Materiewolke entsteht die zweite Gruppe, die Elemente, die schwerer als Eisen sind. Diese Reaktionen werden vor allem von [[Neutron]]en bewirkt, die unter den im Sterninneren herrschenden Bedingungen freigesetzt werden und als ungeladene Teilchen vielfältige Kernreaktionen auslösen können. Atomkerne fangen in schnell aufeinander folgenden Schritten etliche Neutronen ein ([[r-Prozess]]). In nachfolgenden [[Betazerfall|Betazerfällen]] entstehen dann aus den neutronenreichen Kernen stabile [[Nuklid]]e mit erhöhter Protonenzahl, die schweren Elemente jenseits des Eisens.


Die turbulenten Vorgänge in einer Supernova sorgen also nicht nur dafür, dass die Sterne die in ihnen gebildeten Elemente in den Weltraum freigeben, sondern sie erzeugen gleichzeitig eine ganz neue Gruppe von schweren chemischen Elementen. Supernovae sind damit die Motoren eines andauernden [[Transmutation]]sprozesses; ihr Streumaterial bildet die Ausgangsmaterie für die nächste Generation von Sternen und [[Planet]]en. Mit zunehmendem Alter des Universums nimmt daher die Menge an schweren Elementen zu. So hat die Supernova [[SN 2006gy]] in der Galaxie NGC 1260 150 Sonnenmassen gehabt und bei ihrer Explosion schätzungsweise 20 Sonnenmassen allein an [[Nickel]] in das Universum abgegeben.  
Die turbulenten Vorgänge in einer Supernova sorgen also nicht nur dafür, dass die Sterne die in ihnen gebildeten Elemente in den Weltraum freigeben, sondern sie erzeugen gleichzeitig eine ganz neue Gruppe von schweren chemischen Elementen. Supernovae sind damit die Motoren eines andauernden [[Transmutation]]sprozesses; ihr Streumaterial bildet die Ausgangsmaterie für die nächste Generation von Sternen und [[Planet]]en. Mit zunehmendem Alter des Universums nimmt daher die Menge an schweren Elementen zu. So hat die Supernova [[SN 2006gy]] in der Galaxie NGC 1260 150 Sonnenmassen gehabt und bei ihrer Explosion schätzungsweise 20 Sonnenmassen allein an [[Nickel]] in das Universum abgegeben.


In Supernovae bilden sich durch [[Spallation]] (Zertrümmerung von Atomkernen) auch die leichten Elemente [[Lithium]], [[Beryllium]] und [[Bor]], die bei den Fusionsreaktionen im jungen Stern „übergangen“ wurden.
In Supernovae bilden sich durch [[Spallation]] (Zertrümmerung von Atomkernen) auch die leichten Elemente [[Lithium]], [[Beryllium]] und [[Bor]], die bei den Fusionsreaktionen im jungen Stern „übergangen“ wurden.


== Entstehung der einzelnen chemischen Elementgruppen ==
== Entstehung der einzelnen chemischen Elementgruppen ==
Über die genauere Entstehung und Verteilung der einzelnen [[Chemisches Element|chemischen Elemente]] im Universum zeichnen Astro- und Kosmochemie folgendes Bild. Vor rund 13,7 Milliarden Jahren begann das Universum sich  von einem einzigen Punkt aus auszudehnen (Urknall, „Big Bang“), wobei es am Anfang unvorstellbare Energiemengen und -dichte aufwies (Temperatur um 10<sup>32</sup> [[Kelvin]]). Noch bevor es auch nur ein einziges Atom irgendeines Elementes gab, nur 10<sup>−32</sup> Sekunden nach dem Urknall, kühlte das Universum auf ca.10<sup>28</sup> Kelvin ab. Unter diesen Bedingungen konnten in dem heißen „Energiebrei“ des jungen Universums erste Elementarteilchen entstehen: die [[Quark (Physik)|Quarks]], [[Gluon]]en und [[Lepton]]en.
Über die genauere Entstehung und Verteilung der einzelnen [[Chemisches Element|chemischen Elemente]] im Universum zeichnen Astro- und Kosmochemie folgendes Bild. Vor rund 13,8 Milliarden Jahren begann das Universum sich  von einem einzigen Punkt aus auszudehnen (Urknall, „Big Bang“), wobei es am Anfang unvorstellbare Energiemengen und -dichte aufwies (Temperatur um 10<sup>32</sup> [[Kelvin]]). Noch bevor es auch nur ein einziges Atom irgendeines Elementes gab, nur 10<sup>−32</sup> Sekunden nach dem Urknall, kühlte das Universum auf ca. 10<sup>28</sup> Kelvin ab. Unter diesen Bedingungen konnten in dem heißen „Energiebrei“ des jungen Universums erste Elementarteilchen entstehen: die [[Quark (Physik)|Quarks]], [[Gluon]]en und [[Lepton]]en.


Das Universum kühlte sich weiter ab – so weit, dass die bisher als [[Plasma (Physik)|Plasma]] vorliegenden Quarks zu Protonen und Neutronen, den [[Nukleon]]en, kondensierten. Dies geschah zirka 10<sup>−7</sup> Sekunden nach dem Urknall bei 10<sup>14</sup> Kelvin. Es entstanden aber auch Antineutron (n*) und Antiproton (p<sup>−</sup>).
Das Universum kühlte sich weiter ab – so weit, dass die bisher als [[Plasma (Physik)|Plasma]] vorliegenden Quarks zu Protonen und Neutronen, den [[Nukleon]]en, kondensierten. Dies geschah ca. 10<sup>−7</sup> Sekunden nach dem Urknall bei 10<sup>14</sup> Kelvin. Es entstanden aber auch Antineutron (n*) und Antiproton (p<sup>−</sup>).
Materieteilchen und Antimaterieteilchen vernichten sich seitdem gegenseitig unter Umwandlung in [[Energie]],
Materieteilchen und Antimaterieteilchen vernichten sich seither gegenseitig unter Umwandlung in [[Energie]].
::Beispiel: ''p<sup>+</sup> + p<sup>−</sup> → [[Photon]]en (=Energie)''.
Beispiel:
:p<sup>+</sup> + p<sup>−</sup> → [[Photon]]en &nbsp;&nbsp;(= Energie)


Dieser Vorgang kann auch in umgekehrter Richtung verlaufen ([[Paarbildung (Physik)|Paarbildung]]), im expandierenden Universum verminderte sich allerdings die Temperatur, so dass der Vorgang nicht mehr thermisch abläuft. Als das Universum jedoch eine Temperatur von weniger als 10<sup>14</sup> Kelvin erreicht hatte und sich alle Antimaterieteilchen mit Materieteilchen vernichtet hatten, blieb (vermutlich durch einen Mechanismus ähnlich der [[CP-Verletzung]]) nur ein „winziger“ Rest, ein „kleiner Überschuss“ an Materie übrig. Die stabilsten und häufigsten Vertreter dieser ''normalen'' Materie sind Protonen, Neutronen und Elektronen.
Dieser Vorgang kann auch in umgekehrter Richtung verlaufen ([[Paarbildung (Physik)|Paarbildung]]), im expandierenden Universum verminderte sich allerdings die Temperatur, so dass der Vorgang nicht mehr thermisch abläuft. Als das Universum jedoch eine Temperatur von weniger als 10<sup>14</sup> Kelvin erreicht hatte und sich alle Antimaterieteilchen mit Materieteilchen vernichtet hatten, blieb (vermutlich durch einen Mechanismus ähnlich der [[CP-Verletzung]]) nur ein „winziger“ Rest, ein „kleiner Überschuss“ an Materie übrig. Die stabilsten und häufigsten Vertreter dieser ''normalen'' Materie sind Protonen, Neutronen und Elektronen.


=== Erste Fusionsprozesse nach dem Urknall ===
=== Erste Fusionsprozesse nach dem Urknall ===
Die [[primordiale Nukleosynthese]] ist die erste Aktion nach dem Urknall. Aus den frei umherfliegenden Nukleonen entstanden nun etwa eine hundertstel Sekunde nach dem Urknall auch Kerne von schwerem Wasserstoff ([[Deuterium]], D) und [[Helium]]isotopen (He).
Die [[primordiale Nukleosynthese]] ist die erste Aktion nach dem Urknall. Aus den frei umherfliegenden Nukleonen entstanden nun etwa 10<sup>−2</sup> Sekunden nach dem Urknall auch Kerne von schwerem Wasserstoff ([[Deuterium]], D) und [[Helium]]isotopen (He).


Nur die Atomkerne von Wasserstoff (<sup>1</sup>H und <sup>2</sup>D) und Helium (<sup>3</sup>He und <sup>4</sup>He) neben Spuren von Lithium (<sup>7</sup>Li) wurden während dieser primordialen Nukleosynthese gebildet – in einem Verhältnis von 25 Prozent Helium-4 und 75 Prozent Wasserstoff. Die heute zu beobachtenden schwereren Elemente stammen also aus Fusionsreaktionen in Sternen und damit aus viel späterer Zeit. Die erste Fusion von Wasserstoff zu Helium geschah somit lange bevor sich aus dem Wasserstoffgas erste Fixsterne bilden konnten: Die [[primordiale Nukleosynthese]] dauerte nur etwa drei Minuten und fand gleichzeitig überall im gesamten Universum statt. Die Temperatur betrug zu diesem Zeitpunkt noch 10 Milliarden Kelvin (entsprechend 1 MeV). Danach fielen Temperatur und Dichte des Universums unter die kritischen Werte, die für die [[Kernfusion]] nötig sind.
Nur die Atomkerne von Wasserstoff (<sup>1</sup>H und <sup>2</sup>D) und Helium (<sup>3</sup>He und <sup>4</sup>He) neben Spuren von Lithium (<sup>7</sup>Li) wurden während dieser primordialen Nukleosynthese gebildet – in einem Verhältnis von 25 Prozent Helium-4 und 75 Prozent Wasserstoff. Die heute zu beobachtenden schwereren Elemente stammen also aus Fusionsreaktionen in Sternen und damit aus viel späterer Zeit. Die erste Fusion von Wasserstoff zu Helium geschah somit lange bevor sich aus dem Wasserstoffgas erste Fixsterne bilden konnten: Die [[primordiale Nukleosynthese]] dauerte nur etwa drei Minuten und fand gleichzeitig überall im gesamten Universum statt. Die Temperatur betrug zu diesem Zeitpunkt noch 10<sup>10</sup> Kelvin. Danach fielen Temperatur und Dichte des Universums unter für die für eine [[Kernfusion]] erforderlichen Werte.


Fünf Minuten nach dem Urknall ist die Teilchendichte des Universums dann so weit gesunken, dass die primordiale Nukleosynthese endete. Die noch übrig gebliebenen freien Neutronen zerfielen im Verlauf der nächsten Minuten.
Fünf Minuten nach dem Urknall ist die Teilchendichte des Universums dann so weit gesunken, dass die primordiale Nukleosynthese endete. Die noch übrig gebliebenen freien Neutronen zerfielen im Verlauf der nächsten Minuten.


Als die Temperatur <math>T</math> unter die entsprechende Bindungsenergie (<math>E > k_\mathrm B T</math>) der Hüllenelektronen gesunken war, vereinigten sich die Atomkerne mit Elektronen zu den ersten Atomen
Als die Temperatur <math>T</math> unter die entsprechende Bindungsenergie (E&nbsp;>&nbsp;k<sub>B</sub>T) der Hüllenelektronen gesunken war, vereinigten sich die Atomkerne mit Elektronen zu den ersten Atomen
::''p<sup>+</sup> + e<sup>−</sup> → H-Atom (Wasserstoff).''
:p<sup>+</sup> + e<sup>−</sup> → H-Atom &nbsp;&nbsp;(Wasserstoff).


Das Zeitalter der atomaren Materie begann mit dem chemischen Element Wasserstoff. Dass die Häufigkeit von Lithium in den Atmosphären früher Sterne um den Faktor zwei bis drei geringer ist, als die gegenwärtigen Modelle der kosmologischen Nukleosynthese vorhersagen (die sich beim Häufigkeitsverhältnis von Wasserstoff zu Helium als zuverlässig erwiesen haben), wird als [[Primordiales Lithiumproblem]] bezeichnet.
Das Zeitalter der atomaren Materie begann mit dem chemischen Element Wasserstoff. Dass die Häufigkeit von Lithium in den Atmosphären früher Sterne um den Faktor zwei bis drei geringer ist, als die gegenwärtigen Modelle der kosmologischen Nukleosynthese vorhersagen (die sich beim Häufigkeitsverhältnis von Wasserstoff zu Helium als zuverlässig erwiesen haben), wird als [[Primordiales Lithiumproblem]] bezeichnet.
Zeile 75: Zeile 77:
Wenn [[Deuterium]] D beteiligt ist, wird der entsprechende Prozess auch „'''Deuteriumbrennen'''“ genannt.
Wenn [[Deuterium]] D beteiligt ist, wird der entsprechende Prozess auch „'''Deuteriumbrennen'''“ genannt.


Reaktionen (Auswahl)
'''Reaktionen (Auswahl)'''
* D + T → <sup>4</sup>He + n + 17,588 MeV (größter Wirkungsquerschnitt)
:{|
* D + D → <sup>3</sup>He + n + 3,268 MeV
| D + D || align="center" width="30" | → || T || + p || + {{0}}4,03 MeV
* D + D → T + p + 4,03 MeV
|-
* <sup>3</sup>He + D → <sup>4</sup>He + p + 18,34 MeV
| D + T || align="center" width="30" | || <sup>4</sup>He || + n || + 17,588 MeV || (größter Wirkungs&shy;querschnitt)
|-
| D + D || align="center" width="30" | || <sup>3</sup>He || + n || + {{0}}3,268 MeV
|-
| D + <sup>3</sup>He || align="center" width="30" | || <sup>4</sup>He || + p || + 18,34 MeV
|}


Auch in der Sonne finden unter Energiefreisetzung Fusionsreaktionen mit dem Produkt <sup>4</sup>He statt, und zwar in Form der [[Proton-Proton-Reaktion]]. Zudem findet in der Sonne ein Kohlenstoff-katalysierter Fusionszyklus statt, der CNO- oder [[Bethe-Weizsäcker-Zyklus]], der etwa 1,6 Prozent der Energie des Sonnenhaushalts ausmacht.
Auch in der Sonne finden unter Energiefreisetzung Fusionsreaktionen mit dem Produkt <sup>4</sup>He statt, und zwar in Form der [[Proton-Proton-Reaktion]]. Zudem findet in der Sonne ein Kohlenstoff-katalysierter Fusionszyklus statt, der CNO- oder [[Bethe-Weizsäcker-Zyklus]], der etwa 1,6 Prozent der Energie des Sonnenhaushalts ausmacht.
Sterne mit weniger als 0,08 Sonnenmassen erreichen das Stadium der Wasserstoff-Fusion übrigens nie – sie werden [[Brauner Zwerg|Braune Zwerge]] genannt.
Sterne mit weniger als 0,08 Sonnenmassen erreichen das Stadium der Wasserstoff-Fusion übrigens nie – sie werden [[Brauner Zwerg|Braune Zwerge]] genannt.


Die Asche beider Formen des Wasserstoffbrennens ist Helium <sup>4</sup>He. Wenn der Wasserstoffvorrat unserer [[Sonne]] in rund 5 Milliarden Jahren ausgebrannt sein wird, dann wird ihr Kern nur noch aus Helium bestehen. Sie wird sich dabei so weit aufblähen, dass sie die inneren Planeten Merkur und Venus verschluckt, dass ihre Scheibe am irdischen Himmel über 100-mal größer sein wird als heute und dass die Ozeane der Erde verdampfen und verkochen.
Die Asche beider Formen des Wasserstoffbrennens ist Helium <sup>4</sup>He. Wenn der Wasserstoffvorrat unserer [[Sonne]] in rund 5 Milliarden Jahren ausgebrannt sein wird, dann wird ihr Kern nur noch aus Helium bestehen. Sie wird sich dabei so weit aufblähen, dass sie die inneren Planeten Merkur und Venus verschluckt, dass ihre Scheibe am irdischen Himmel über 100-mal größer sein wird als heute.


=== Heliumbrennen ===
=== Heliumbrennen ===
[[Datei:OrionWÄCHTER.jpg|miniatur|Wintersternbild Orion: Unten rechts [[Rigel]] – [[Beteigeuze]] rötlich, oben links]]  
{{Mehrere Bilder
[[Datei:Position Alpha Ori.png|miniatur|Karte von Sternbild Orion – oben links Stern Beteigeuze]]
| align      = right
| Richtung    = horizontal
| Kopfzeile  = Beteigeuze und Rigel im Wintersternbild Orion
| Kopfzeile_align = center
| Breite      =
| Hintergrund =
| unten      =
| center      =
| Bild1      = OrionWÄCHTER.jpg
| Untertitel1 = [[Beteigeuze]]: rötlich, oben links<br />[[Rigel]]: unten rechts &nbsp;(fotogr. Aufnahme)
| Breite1    = 220
| Bild2      = Position Alpha Ori.png
| Untertitel2 = Beteigeuze α: oben links <big>'''⇧'''</big><br />Rigel β: unten rechts &nbsp;(Sternkarte)
| Breite2    = 261
}}
 
{{Hauptartikel|Heliumbrennen}}
{{Hauptartikel|Heliumbrennen}}
Als Beispiel hierzu dient [[Beteigeuze]] im Orion, ein aufgeblähter Riesenstern (Spektralklasse M2, 700–1000-facher Sonnendurchmesser), er besteht fast nur noch aus Helium und weist kaum noch Wasserstoffvorräte auf.
Ein Beispiel ist [[Beteigeuze]] im Orion, ein aufgeblähter Riesenstern (Spektralklasse M2, 700- bis 1000-facher Sonnendurchmesser), er besteht fast nur noch aus Helium und weist kaum noch Wasserstoffvorräte auf.
Am Ende der Lebenszeit eines Sterns, wenn der Wasserstoff aufgebraucht ist, bläht ein Stern sich auf und im nun noch komprimierteren Zentrum setzt eine neue Kernreaktion ein: Das Heliumbrennen. Zusätzliche Energie kommt nun aus der Fusion von Helium zu Kohlenstoff und Sauerstoff (durch den [[Drei-Alpha-Prozess]]).
Am Ende der Lebenszeit eines Sterns, wenn der Wasserstoff aufgebraucht ist, bläht ein Stern sich auf und im nun noch komprimierteren Zentrum setzt eine neue Kernreaktion ein: Das Heliumbrennen. Zusätzliche Energie kommt nun aus der Fusion von Helium zu Kohlenstoff und Sauerstoff (durch den [[Drei-Alpha-Prozess]]).
Sterne der ersten Generation enthielten zunächst nur leichtere Elemente – Isotope von Kohlenstoff, Sauerstoff und schwereren Elementen kamen nur in Sternen späterer Generationen vor. Die Heliumfusion zu „Metallen“ wie Kohlenstoff, Sauerstoff und – später – auch zu Silicium liefert weniger Energie als das Wasserstoffbrennen. Sie benötigt auch eine höhere Fusionstemperatur.
Sterne der ersten Generation enthielten zunächst nur leichtere Elemente – Isotope von Kohlenstoff, Sauerstoff und schwereren Elementen kamen nur in Sternen späterer Generationen vor. Die Heliumfusion zu „Metallen“ wie Kohlenstoff, Sauerstoff und – später – auch zu Silicium liefert weniger Energie als das Wasserstoffbrennen. Sie benötigt höhere Drücke und Temperaturen als die Wasserstofffusion.


In der [[Astronomie]] bezeichnet man übrigens anders als in der Chemie jedes chemische Element mit einer [[Ordnungszahl]] höher als Helium als „Metall“, und die [[Metallizität]] gibt an, wie hoch der Gehalt eines Sternes an Elementen ist, die schwerer als Helium sind. Nur Wasserstoff und Helium sind ja – zusammen mit einigen Spuren von Lithium – die einzigen Elemente, welche im Universum nach dem Urknall vorhanden sind. Alle weiteren Elemente stammen aus ehemaligen Sternen, in denen sie durch [[Kernfusion]] erzeugt wurden, oder aus [[Supernova]]-Explosionen. Die [[Metallizität]] von Objekten des Weltraums kann daher auch als [[Indikator (Chemie)|Indikator]] für seine stellare Aktivität aufgefasst werden.
In der [[Astronomie]] bezeichnet man übrigens anders als in der Chemie jedes chemische Element mit einer [[Ordnungszahl]] höher als Helium als „Metall“, und die [[Metallizität]] gibt an, wie hoch der Gehalt eines Sternes an Elementen ist, die schwerer als Helium sind. Nur Wasserstoff und Helium sind ja – zusammen mit einigen Spuren von Lithium – die einzigen Elemente, welche im Universum nach dem Urknall vorhanden sind. Alle weiteren Elemente stammen aus ehemaligen Sternen, in denen sie durch [[Kernfusion]] erzeugt wurden, oder aus [[Supernova]]-Explosionen. Die Metallizität von Objekten des Weltraums kann daher auch als [[Indikator (Chemie)|Indikator]] für seine stellare Aktivität aufgefasst werden.


=== Entstehung der „Metalle“ ===
=== Entstehung der „Metalle“ ===
Größere Sterne können mit ihrer Masse auch einen stärkeren [[Gravitationsdruck]] erzeugen, wodurch diese am Ende auch schwerere Elemente fusionieren (bis zur [[Massenzahl]] 60).
Schwerere Sterne können einen höheren [[Gravitationsdruck]] aufbauen, was die Fusion von schwereren Elementen bis zur [[Massenzahl]] 60 ermöglicht.
In den Zentren von Sternen mit mehr als 0,4 Sonnenmassen wird nach dem Wasserstoffbrennen zunächst die Kernreaktion von Helium zu Kohlenstoff möglich, und ab 0,7 Sonnenmassen schließlich sogar die Kohlenstoff-Fusion, bei der je zwei C-Atome fusionieren und Neon (Ne), Helium oder Natrium (Na) und Protonen sowie Magnesium (Mg) und Protonen oder Neutronen bilden. Nach H und He sind daher die Elemente Kohlenstoff, Neon, Natrium und Magnesium die nächst häufigsten Grundstoffe im Universum, gefolgt von den Elementen Sauerstoff, Silicium, Phosphor und Schwefel.
Im Zentrum von Sternen ab 0,4 Sonnenmassen wird nach dem Wasserstoffbrennen zunächst die Kernreaktion von Helium zu Kohlenstoff möglich. Ab 0,7 Sonnenmassen wird die Kohlenstoff-Fusion, bei der je zwei Kohlenstoff-Atome zu Neon, Helium oder Natrium und Protonen sowie Magnesium und Protonen oder Neutronen fusionieren, möglich. Nach Wasserstoff und Helium sind daher die Elemente Kohlenstoff, Neon, Natrium und Magnesium die nächst häufigsten Grundstoffe im Universum, gefolgt von den Elementen Sauerstoff, Silicium, Phosphor und Schwefel.


Im Zuge des Heliumbrennens entsteht auch Sauerstoff: Ab etwa 1,4 Milliarden Kelvin verschmelzen je zwei Sauerstoff-Atomkerne (unter Abgabe von He, H, Protonen und Neutronen) zu Silicium-28, Phosphor-31 oder den beiden Schwefelisotopen S-32 und S-31, unter Umständen auch zu Chlor und Argon.
Im Zuge des Heliumbrennens entsteht auch Sauerstoff. Ab etwa 1,4 Milliarden Kelvin verschmelzen je zwei Sauerstoff-Atomkerne (unter Abgabe von Helium, Wasserstoff, Protonen und Neutronen) zu Silicium-28, Phosphor-31 oder den beiden Schwefelisotopen Schwefel-31 und -32, unter Umständen auch zu Chlor und Argon.


[[Beteigeuze]], der rotfunkelnde Schulterstern im Sternbild Orion, ist vermutlich ebenso ein solcher Stern wie [[Antares]], der tiefrot strahlende Hauptstern im Skorpion: Beide gehören zur Kategorie [[Roter Riese]], haben fast allen Wasserstoff verbraucht und das Heliumbrennen begonnen. Ein solcher Stern rußt: [[Kohlenstoff]] wird in ihm gebildet, und Ruß wird auch durch den Sternenwind aus ihm freigesetzt.
[[Beteigeuze]], der rote Schulterstern im Sternbild Orion, ist vermutlich ebenso ein solcher Stern wie [[Antares]], der tiefrot strahlende Hauptstern im Skorpion. Beide gehören zur Kategorie [[Roter Riese]], haben fast allen Wasserstoff verbraucht und das Heliumbrennen begonnen. Ein solcher Stern rußt: [[Kohlenstoff]] wird in ihm gebildet, und Ruß wird auch durch den Sternenwind aus ihm freigesetzt.


Sterne mit über 10 Sonnenmassen erreichen Zentraltemperaturen, in denen sogar der Aufbau von Elementen bis hin zum [[Eisen]] möglich wird, und zwar umso schneller, je massereicher sie bei ihrer Bildung waren. Ein Stern mit 20 Sonnenmassen schleudert bei seiner Explosion als [[Supernova]] schließlich mehrere Sonnenmassen Materie in das All.
Sterne mit über 10 Sonnenmassen erreichen Zentraltemperaturen, in denen der Aufbau von Elementen bis hin zum [[Eisen]] möglich wird, und zwar umso schneller, je massereicher sie bei ihrer Bildung waren. Ein Stern mit 20 Sonnenmassen schleudert bei seiner Explosion als [[Supernova]] schließlich mehrere Sonnenmassen Materie in das All.
Aus den Fetzen einer solchen Supernova-Explosion muss sich unsere Sonne einst als Stern der 3. oder 4. Generation gebildet haben – die Kosmochemie versucht, die Entstehung des Sonnensystems anhand der Häufigkeitsverteilung der [[Isotop]]e aus jener Supernova-Explosion zu rekonstruieren. Bei Temperaturen von über 4 Milliarden Kelvin entstanden hier auch noch schwerere Elemente als nur [[Eisen]], wobei schwere Atomkerne unter Energieaufnahme aus der Explosion beispielsweise zu [[Uran]]atomen verschmelzen: Bei jeder Atombombenexplosion und in jedem Kernkraftwerk können wir also aus den Brennelementen nur diejenigen Energien gewinnen, die bei der Explosion von Supernovae in jene überschweren Atomkerne hineingebrannt wurde – das thermonukleare Urfeuer, aus dem unser Sonnensystem entstand.
Aus den Fetzen einer solchen Supernova-Explosion muss sich unsere Sonne einst als Stern der 3. oder 4. Generation gebildet haben – die Kosmochemie versucht, die Entstehung des Sonnensystems anhand der Häufigkeitsverteilung der [[Isotop]]e aus jener Supernova-Explosion zu rekonstruieren. Bei Temperaturen von über 4 Milliarden Kelvin entstanden hier auch noch schwerere Elemente als nur [[Eisen]], wobei schwere Atomkerne unter Energieaufnahme aus der Explosion beispielsweise zu [[Uran]]atomen verschmelzen: Bei jeder Atombombenexplosion und in jedem Kernkraftwerk können wir also aus den Brennelementen nur diejenigen Energien gewinnen, die bei der Explosion von Supernovae in jene überschweren Atomkerne hineingebrannt wurde – das thermonukleare Urfeuer, aus dem unser Sonnensystem entstand.


=== Das Kohlenstoffbrennen ===
=== Das Kohlenstoffbrennen ===
{{Hauptartikel|Kohlenstoffbrennen}}
{{Hauptartikel|Kohlenstoffbrennen}}
Das ''Kohlenstoffbrennen'' ist eine [[Kernfusion]]sreaktion im Anschluss an das Heliumbrennen, durch die in massereichen Sternen mit einer Ausgangsmasse von mindestens 4 [[Sonnenmasse]]n durch Fusion von Kohlenstoff [[Energie]] und schwerere Elemente erzeugt werden. Es tritt ein, nachdem die Fusion leichterer Elemente zum Erliegen gekommen ist. Es setzt hohe Temperaturen von über 6·10<sup>8</sup>&nbsp;Kelvin und Dichten von über 2·10<sup>8</sup>&nbsp;kg/m³ voraus. Beim Kohlenstoffbrennen werden in einer Reihe von Reaktionen jeweils zwei [[Kohlenstoff]]kerne <sup>12</sup>C in andere Kerne umgewandelt – so entstehen die Elemente <sup>24</sup>[[Magnesium|Mg]] (auch das Isotop <sup>23</sup>Mg), <sup>23</sup>[[Natrium|Na]], <sup>20</sup>[[Neon|Ne]] und <sup>16</sup>[[Sauerstoff|O]]  
Das ''Kohlenstoffbrennen'' ist eine [[Kernfusion]]sreaktion im Anschluss an das Heliumbrennen, durch die in massereichen Sternen mit einer Ausgangsmasse von mindestens 4 [[Sonnenmasse]]n durch Fusion von Kohlenstoff [[Energie]] und schwerere Elemente erzeugt werden. Es tritt ein, nachdem die Fusion leichterer Elemente zum Erliegen gekommen ist. Es setzt hohe Temperaturen von über 6&#8239;·&#8239;10<sup>8</sup>&nbsp;Kelvin und Dichten von über 2&#8239;·&#8239;10<sup>8</sup>&nbsp;kg/m³ voraus. Beim Kohlenstoffbrennen werden in einer Reihe von Reaktionen jeweils zwei [[Kohlenstoff]]kerne <sup>12</sup>C in andere Kerne umgewandelt – so entstehen die Elemente <sup>24</sup>[[Magnesium|Mg]] (auch das Isotop <sup>23</sup>Mg), <sup>23</sup>[[Natrium|Na]], <sup>20</sup>[[Neon|Ne]] und <sup>16</sup>[[Sauerstoff|O]]


Das Kohlenstoffbrennen setzt erst ein, wenn das Heliumbrennen zum Stillstand gekommen ist. Während des Heliumbrennens wandeln die inzwischen roten, aufgeblähten Riesensterne Helium (He) immer schneller in Kohlenstoff und Sauerstoff um, bis nicht mehr genug Helium vorhanden ist, um die Fusion aufrechtzuerhalten: Der Kollaps setzt ein. Der inaktive, hauptsächlich aus Kohlenstoff und Sauerstoff bestehende Kern stürzt daraufhin durch die [[Gravitation]]skraft in sich zusammen, was einen Temperatur- und Dichteanstieg bewirkt, bis schließlich die Entzündungstemperatur für das Kohlenstoffbrennen erreicht ist. Durch den daraufhin erzeugten [[Strahlungsdruck]] stabilisiert sich der Kern, und seine weitere Kontraktion wird vorübergehend gestoppt. Durch die Temperaturerhöhung im Inneren des Sterns kann in einer Schale um den Kernbereich wieder das Heliumbrennen einsetzen, jetzt als so genanntes [[Schalenbrennen]].
Das Kohlenstoffbrennen setzt erst ein, wenn das Heliumbrennen zum Stillstand gekommen ist. Während des Heliumbrennens wandeln die inzwischen roten, aufgeblähten Riesensterne Helium (He) immer schneller in Kohlenstoff und Sauerstoff um, bis nicht mehr genug Helium vorhanden ist, um die Fusion aufrechtzuerhalten: Der Kollaps setzt ein. Der inaktive, hauptsächlich aus Kohlenstoff und Sauerstoff bestehende Kern stürzt daraufhin durch die [[Gravitation]]skraft in sich zusammen, was einen Temperatur- und Dichteanstieg bewirkt, bis schließlich die Entzündungstemperatur für das Kohlenstoffbrennen erreicht ist. Durch den daraufhin erzeugten [[Strahlungsdruck]] stabilisiert sich der Kern, und seine weitere Kontraktion wird vorübergehend gestoppt. Durch die Temperaturerhöhung im Inneren des Sterns kann in einer Schale um den Kernbereich wieder das Heliumbrennen einsetzen, jetzt als so genanntes [[Schalenbrennen]].
Zeile 122: Zeile 144:
=== Sauerstoffbrennen ===
=== Sauerstoffbrennen ===
{{Hauptartikel|Sauerstoffbrennen}}
{{Hauptartikel|Sauerstoffbrennen}}
Das ''Sauerstoffbrennen'' betrifft [[Stern]]e mit einer Ausgangsmasse von mindestens 8 [[Sonnenmasse]]n. Es setzt ein, nachdem die leichteren Elemente durch andere Fusionsprozesse umgewandelt wurden. Voraussetzung für das Sauerstoffbrennen sind hohe Temperaturen von mindestens 1,5·10<sup>9</sup>&nbsp;Kelvin und hohe Dichten von mindestens 10<sup>10</sup>&nbsp;kg/m<sup>3</sup>.
Das ''Sauerstoffbrennen'' betrifft [[Stern]]e mit einer Ausgangsmasse von mindestens 8 [[Sonnenmasse]]n. Es setzt ein, nachdem die leichteren Elemente durch andere Fusionsprozesse umgewandelt wurden. Voraussetzung für das Sauerstoffbrennen sind hohe Temperaturen von mindestens 1,5&#8239;·&#8239;10<sup>9</sup>&nbsp;Kelvin und hohe Dichten von mindestens 10<sup>10</sup>&nbsp;kg/m<sup>3</sup>.


Beim Sauerstoffbrennen fusionieren jeweils zwei Sauerstoffkerne <sup>16</sup>O zu verschiedenen neuen Kernen, darunter [[Schwefel]] (S), [[Phosphor]] (P), [[Silicium]] (Si) und [[Magnesium]] (Mg). Dabei werden zudem [[Gammastrahlung|Gammaquanten]], Neutronen n, Protonen oder Wasserstoffkerne <sup>1</sup>H (Proton) und [[Alphastrahlung|Alphateilchen]] ([[Helium]]kerne) <sup>4</sup>He frei.
Beim Sauerstoffbrennen fusionieren jeweils zwei Sauerstoffkerne <sup>16</sup>O zu verschiedenen neuen Kernen, darunter [[Schwefel]] (S), [[Phosphor]] (P), [[Silicium]] (Si) und [[Magnesium]] (Mg). Dabei werden zudem [[Gammastrahlung|Gammaquanten]], Neutronen n, Protonen oder Wasserstoffkerne <sup>1</sup>H (Proton) und [[Alphastrahlung|Alphateilchen]] ([[Helium]]kerne) <sup>4</sup>He frei.
Zeile 132: Zeile 154:
=== Siliciumbrennen ===
=== Siliciumbrennen ===
{{Hauptartikel|Siliciumbrennen}}
{{Hauptartikel|Siliciumbrennen}}
Das ''Siliciumbrennen'' erfordert im Sternzentrum sehr hohe Temperaturen von mindestens 2,7·10<sup>9</sup>&nbsp; Kelvin und eine extrem hohe Dichte von mindestens 3·10<sup>10</sup>&nbsp;kg/m<sup>3</sup>.  
Das ''Siliciumbrennen'' erfordert im Sternzentrum sehr hohe Temperaturen von mindestens 2,7&#8239;·&#8239;10<sup>9</sup>&nbsp; Kelvin und eine extrem hohe Dichte von mindestens 3&#8239;·&#8239;10<sup>10</sup>&nbsp;kg/m<sup>3</sup>. Aufgrund ihrer großen Coulomb-Abstoßung können zwei <sup>28</sup>Si–Kerne nicht direkt miteinander reagieren,<ref name=Bodansky>{{Literatur
Zwei Siliciumkerne <sup>28</sup>Si verschmelzen dabei zu [[Nickel]] <sup>56</sup>Ni, das durch zwei Betazerfälle unter Freisetzung von [[Positron]]en e<sup>+</sup> und [[Neutrino|Elektronneutrinos]] über [[Cobalt]] <sup>56</sup>Co schließlich in [[Eisen]] <sup>56</sup>Fe umgewandelt wird.
| Autor=Bodansky, David and Clayton, Donald D. and Fowler, William A.
| Titel=Nucleosynthesis During Silicon Burning
| Sammelwerk=Physycal Review Letters
| Band=20
| Nummer=4
| Datum=1968
| Sprache=en
| Seiten=161--164
| DOI=10.1103/PhysRevLett.20.161
}}</ref>
stattdessen werden die beim Sauerstoffbrennen erzeugten Kerne durch [[Photodesintegration]] von Photonen zerstört. Die Bruchstücke lagern in einer Reihe von Schritten Alpha-Teilchen, Protonen oder Neutronen an. Dadurch wird letztendlich das [[Eisen]]isotop <sup>56</sup>Fe erreicht.<ref name=Karttunen>{{Literatur
| Autor=Hannu Karttunen, Pekka Kröger, Heikki Oja, Markku Poutanen, Karl Johan Donner
| Titel=Fundamental Astronomy
| Auflage= 5
| Verlag= Springer
| Ort= Berlin / Heidelberg / New York
| Datum= 2007
| Sprache=en
| Kapitel= 10.3 Stellar Energy Sources
| Seiten=237
| ISBN=978-3-540-34143-7
| Originaltitel=Tähtitieteen perusteet
| Originaljahr=2003
| Originalort=Helsinki
| Originalsprache=fi
}}</ref>
<!--Zwei Siliciumkerne <sup>28</sup>Si verschmelzen dabei zu [[Nickel]] <sup>56</sup>Ni, das durch zwei Betazerfälle unter Freisetzung von [[Positron]]en e<sup>+</sup> und [[Neutrino|Elektronneutrinos]] über [[Cobalt]] <sup>56</sup>Co schließlich in [[Eisen]] <sup>56</sup>Fe umgewandelt wird.-->
 
Das Siliciumbrennen folgt auf das Sauerstoffbrennen, welches bei Versiegen des Sauerstoffs im Zentralbereich des Sterns endet. Wie auch am Ende der vorangegangenen Brennphasen wird der nun siliciumreiche Kern wegen des fehlenden [[Strahlungsdruck]]s durch die [[Gravitation]] weiter komprimiert. Temperatur und Dichte steigen dadurch, bis die Voraussetzungen für das Siliciumbrennen erreicht ist. Der Stern gelangt damit ein letztes Mal in ein hydrostatisches Gleichgewicht zwischen Gravitation und Strahlungsdruck. Während des Siliciumbrennens im Kern laufen weiterhin in Schalen um den Kern herum das Sauerstoff-, Neon-, Kohlenstoff-, Helium- und Wasserstoffbrennen ab.


Das Siliciumbrennen folgt auf das Sauerstoffbrennen, welches endet, wenn im Zentralbereich des Sterns kein weiterer Sauerstoff für die Fusion vorhanden ist. Wie auch am Ende der vorangegangenen Brennphasen wird der Kern, der nun reich an Silicium ist, wegen des fehlenden [[Strahlungsdruck]]s durch die [[Gravitation]] weiter komprimiert. Dadurch steigen Temperatur und Dichte so lange, bis die Voraussetzung für das Siliciumbrennen erreicht ist. Der Stern gelangt damit ein letztes Mal in ein hydrostatisches Gleichgewicht zwischen Gravitation und Strahlungsdruck. Während des Siliciumbrennens im Kern laufen weiterhin in Schalen um den Kern herum das Sauerstoff-, Neon-, Kohlenstoff-, Helium- und Wasserstoffbrennen ab.
Das Siliciumbrennen stellt das Ende der thermonuklearen Brennprozesse dar. Der Vorrat an Kernbrennstoff im Inneren wird beim Siliciumbrennen je nach Masse des Sterns in wenigen Stunden bis zu wenigen Tagen aufgebraucht, und dem Gravitationskollaps folgt die gewaltigste Explosion, die man im Universum kennt: eine [[Supernova]] des Typs II.


Das Siliciumbrennen stellt das Ende der thermonuklearen Brennprozesse dar. Der Vorrat an Kernbrennstoff im Inneren wird beim Siliciumbrennen je nach Masse des Sterns in nur einigen Stunden bis zu wenigen Tagen aufgebraucht, und dem Gravitationskollaps folgt die gewaltigste Explosion, die man im Universum kennt: eine [[Supernova]] des Typs II.
{{Mehrere Bilder
| align      = right
| Richtung    = horizontal
| Kopfzeile  = Überreste von Supernovae
| Kopfzeile_align = center
| Breite      =
| Hintergrund =
| unten      =
| center      =
| Bild1      = Sig06-028.jpg
| Untertitel1 = NGC 1952SST
| Breite1    = 240
| Bild2      = Supernova1987A.jpg
| Untertitel2 = [[Supernova 1987A]]
| Breite2    = 220
}}


=== Entstehung schwerster Elemente in Supernovae ===
=== Entstehung schwerster Elemente in Supernovae ===
{{Hauptartikel|Supernova}}
{{Hauptartikel|Supernova}}
[[Datei:Sig06-028.jpg|miniatur|NGC 1952SST – Überreste einer Supernova]]
 
[[Datei:Supernova1987A.jpg|miniatur|Überreste der [[Supernova 1987A]]]]
Elemente mit größeren Massenzahlen als 60 können hingegen durch stellare Brennprozesse nicht mehr entstehen. Die Fusion der entsprechenden Kerne verbraucht Energie ([[Endotherme Reaktion|endotherm]]), statt sie freizusetzen.
Elemente mit größeren Massenzahlen als 60 können hingegen durch stellare Brennprozesse nicht mehr entstehen. Die Fusion der entsprechenden Kerne verbraucht Energie ([[Endotherme Reaktion|endotherm]]), statt sie freizusetzen.
Da Elemente mit höheren Massenzahlen existieren, muss es weitere Möglichkeiten der Nukleosynthese geben. Nachdem der Stern vollkommen ausgebrannt ist, erlischt er nun endgültig. Der stabilisierende Strahlungsdruck fällt weg, und es kommt zum Kernkollaps. Er zieht sich unter Einwirkung seiner eigenen Schwerkraft zusammen.
Da Elemente mit höheren Massenzahlen existieren, muss es weitere Möglichkeiten der Nukleosynthese geben. Nachdem der Stern vollkommen ausgebrannt ist, erlischt er nun endgültig. Der stabilisierende Strahlungsdruck fällt weg, und es kommt zum Kernkollaps. Er zieht sich unter Einwirkung seiner eigenen Schwerkraft zusammen.
* Bei einer Masse, die in der Größenordnung unserer Sonne oder darunter liegt, wird der Stern einen Teil seiner äußeren Hülle abstoßen. Er endet als schwach leuchtender [[Weißer Zwerg]], dessen weitere Abkühlung noch Milliarden von Jahre dauern kann.
* Bei einer Masse, die in der Größenordnung unserer Sonne oder darunter liegt, wird der Stern einen Teil seiner äußeren Hülle abstoßen. Er endet als schwach leuchtender [[Weißer Zwerg]], dessen weitere Abkühlung Milliarden von Jahren dauert.
* Bei einer sehr großen Masse (ab acht Sonnenmassen) schreitet die Kontraktion sehr schnell voran, der Stern implodiert faktisch. Bei dieser dramatischen Verdichtung wird eine ungeheuer große Menge an Gravitationsenergie freigesetzt, die für eine beträchtliche Erhöhung der Temperatur und damit für eine explosionsartige Ausweitung der möglichen Kernreaktionen im gesamten Sternvolumen sorgt. Innerhalb von ein bis zwei Tagen nimmt die Helligkeit des bis dahin unscheinbaren Sterns so gewaltig zu, dass er, wie von [[Tycho Brahe]] 1572 beschrieben, heller als alle Planeten erscheint und selbst am Tag mit bloßem Auge beobachtbar ist. Dieser gewaltige [[Leuchtkraft]]ausbruch dauert nur wenige Tage. Eine ''[[Supernova]]'' ist entstanden, bei der der äußere Teil der Sternenmaterie, manchmal mehr als die Hälfte seiner gesamten Masse, in den interstellaren Raum geschleudert wird.
* Bei einer Masse ab 8 Sonnenmassen schreitet die Kontraktion sehr schnell voran, der Stern implodiert. Bei dieser Verdichtung wird eine große Menge an Gravitationsenergie freigesetzt, die für eine beträchtliche Erhöhung der Temperatur und damit für eine explosionsartige Ausweitung der möglichen Kernreaktionen im gesamten Sternvolumen sorgt. Innerhalb von ein bis zwei Tagen nimmt die Helligkeit des bis dahin unscheinbaren Sterns so gewaltig zu, dass er, wie von [[Tycho Brahe]] 1572 beschrieben, heller als alle Planeten erscheint und selbst am Tag mit bloßem Auge beobachtbar ist. Dieser gewaltige [[Leuchtkraft]]ausbruch dauert nur wenige Tage. Eine ''[[Supernova]]'' ist entstanden, bei der der äußere Teil der Sternenmaterie, manchmal mehr als die Hälfte seiner gesamten Masse, in den interstellaren Raum geschleudert wird.


In dieser explosiven Materiewolke entsteht nun die zweite Gruppe von Elementen, die schwerer als Eisen sind. Sie werden vielmehr durch [[Neutronenanlagerung|Neutronen]]- ([[S-Prozess|s-]] und [[r-Prozess]]) und [[Protonenanlagerung]] ([[p-Prozess]]) gebildet. An diesen Reaktionen sind vor allem die [[Neutron]]en beteiligt, die im Inneren des zerberstenden Sterns unter den dort herrschenden extremen Bedingungen freigesetzt werden und als ungeladene Teilchen vielfältige Kernreaktionen auslösen können. Geraten Atomkerne in einen solchen Neutronenfluss, so fangen sie, ähnlich wie in einem [[Kernreaktor|Reaktor]], in schnell aufeinander folgenden Schritten etliche Neutronen ein. In nachfolgenden Betazerfällen entstehen aus den neutronenreichen Kernen stabile [[Isotop]]e mit erhöhter Protonenzahl, die letzten, schweren Elemente jenseits des Eisens.
In dieser explosiven Materiewolke entsteht nun die zweite Gruppe von Elementen, die schwerer als Eisen sind. Sie werden vielmehr durch [[Neutronenanlagerung|Neutronen]]- ([[S-Prozess|s-]] und [[r-Prozess]]) und [[Protonenanlagerung]] ([[p-Prozess]]) gebildet. An diesen Reaktionen sind vor allem die [[Neutron]]en beteiligt, die im Inneren des zerberstenden Sterns unter den dort herrschenden extremen Bedingungen freigesetzt werden und als ungeladene Teilchen vielfältige Kernreaktionen auslösen können. Geraten Atomkerne in einen solchen Neutronenfluss, so fangen sie, ähnlich wie in einem [[Kernreaktor|Reaktor]], in schnell aufeinander folgenden Schritten etliche Neutronen ein. In nachfolgenden Betazerfällen entstehen aus den neutronenreichen Kernen stabile [[Isotop]]e mit erhöhter Protonenzahl, die letzten, schweren Elemente jenseits des Eisens.
Zeile 153: Zeile 217:


== Literatur ==
== Literatur ==
* {{Literatur|Autor=[[Margaret Burbidge]], [[Geoffrey Burbidge|Geoffrey Ronald Burbidge]], [[William Alfred Fowler]], [[Fred Hoyle]]|Titel=Synthesis of the Elements in Stars|Sammelwerk=Reviews of Modern Physics|Band=29|Nummer=4|Jahr=1957|Seiten=547–650|DOI= 10.1103/RevModPhys.29.547}} Die Arbeit ist auch als ''B²FH'' bekannt.
* {{Literatur|Autor=[[Margaret Burbidge]], [[Geoffrey Burbidge|Geoffrey Ronald Burbidge]], [[William Alfred Fowler]], [[Fred Hoyle]]|Titel=Synthesis of the Elements in Stars|Sammelwerk=Reviews of Modern Physics|Band=29|Nummer=4|Jahr=1957|Seiten=547–650|DOI= 10.1103/RevModPhys.29.547|Sprache=en|Kommentar=Die Arbeit ist auch als ''B²FH'' bekannt.}}
* [[Claus E. Rolfs]], William S. Rodney: ''Cauldrons in the Cosmos: Nuclear Astrophysics (Theoretical Astrophysics Series)''. Univ. of Chicago Pr., Chicago 1988, ISBN 0-226-72456-5.
* [[Claus E. Rolfs]], William S. Rodney: ''Cauldrons in the Cosmos: Nuclear Astrophysics (Theoretical Astrophysics Series)''. Univ. of Chicago Pr., Chicago 1988, ISBN 0-226-72456-5.
* [[Heinz Oberhummer]]: ''Kerne und Sterne: Einführung in die [[Nukleare Astrophysik]]''. Barth, Leipzig/Berlin/Heidelberg 1993, ISBN 3-335-00319-5.
* [[Heinz Oberhummer]]: ''Kerne und Sterne: Einführung in die [[Nukleare Astrophysik]]''. Barth, Leipzig/Berlin/Heidelberg 1993, ISBN 3-335-00319-5.

Aktuelle Version vom 17. Oktober 2021, 12:14 Uhr

Quellen der chemischen Elemente in unserem Sonnensystem
(Link für genauen Prozentzahlen durch Überstreichen mit der Maus)

Die Nukleosynthese (von lateinisch nucleus ‚Kern‘, ‚Atomkern‘ und von {{Modul:Vorlage:lang}} Modul:ISO15924:97: attempt to index field 'wikibase' (a nil value), ‚Zusammenfügung‘ – auch als Nukleogenese oder Elemententstehung bezeichnet) ist die Entstehung von Atomkernen und damit den chemischen Elementen. Man unterscheidet zwischen der

Die primordiale Nukleosynthese setzte ein, als die Temperatur im Universum so weit gesunken war, dass Deuterium nicht mehr durch hochenergetische Photonen zerstört wurde. Sie endete etwa drei Minuten nach dem Urknall.

Die stellare Nukleosynthese findet im Inneren aller Sterne statt. Im Verlauf der Entwicklung eines Sterns gibt es charakteristische Kernfusionen; zunächst entsteht Helium, später schwerere Elemente bis zum Eisen, wobei Energie frei wird, die der Stern als Strahlung abgibt (die ihn „zum Stern macht“).

Für die Kernfusion zu Elementen mit höherer Ordnungszahl als Eisen wird dagegen Energie benötigt. Sie entstehen nicht bei der stellaren Nukleosynthese, sondern am Ende der Lebenszeit des Sterns bei dessen Sternexplosion zur Supernova; das geschieht aber nur bei Sternen, die dafür groß genug sind. Die schweren Elemente werden dabei durch Protonen- und Neutroneneinfangreaktionen in p-, r- und s-Prozessen erzeugt.

Elemente auf der Erde bis zum Eisen (siehe PSE) können im Laufe des Lebens unseres Sonnenvorgängers in seinem Inneren entstanden sein; alle Elemente auf der Erde mit höheren Ordnungszahlen als Eisen stammen aus dessen Supernovaexplosion. Noch schwerere, stets radioaktive Elemente entstehen künstlich in Kernreaktoren und in gezielten Experimenten.

Entstehungsorte chemischer Elemente: Urknall und Sterne

Durchschnittliche Bindungsenergie pro Nukleon in Abhängigkeit von der Nukleonenzahl des Atomkerns

Die Kerne chemischer Elemente schwerer als Wasserstoff entstehen laufend durch Kernreaktionen im Innern von Sternen. Noch bevor erste Sterne entstehen konnten, bildeten sich im Rahmen der primordialen Nukleosynthese bereits Deuterium, Helium-3, Helium-4 sowie Spuren von Lithium-7. Diese Nukleosynthese ist Forschungsgegenstand der Nuklearen Astrophysik und spielt auf dem Gebiet der Kosmochemie eine bedeutende Rolle.

Bei der stellaren Nukleosynthese unterscheidet man zwischen zwei Untergruppen von chemischen Elementen bezüglich ihrer Entstehungsgeschichte:

Der exotherme Fusionsprozess endet etwa bei den Elementen Nickel und Eisen. Die höchste Bindungsenergie erreicht das Isotop Nickel-62. Einige endotherme Prozesse finden auch im Inneren von Sternen statt und können noch schwerere Kerne erzeugen. Es entsteht weitaus mehr Eisen-56 als Nickel-62, und der eigentliche Grund dafür und das Enden der Fusionskette liegt in den Details des Fusionsprozesses und dem starken Einfluss der Photodesintegration in diesem Bereich.[1]
  • Zur zweiten Gruppe gehören die Elemente schwerer als Eisen. Ihre Bildung (Synthese) durch Kernfusion erfordert Energiezufuhr. Die nötige Energie stammt unter anderem aus Sternen-Explosionen (Novae, Supernovae u. a.), der Verschmelzung von Neutronensternen[2][3] und radioaktiven Prozessen in AGB-Sternen.[4]

Urknall, Sternentstehung und -entwicklung

Expansion des Universums nach dem Ur­knall und der primordialen Nukleosynthese

Innerhalb der ersten drei Minuten nach dem Urknall entstanden bei hohen Temperaturen und Dichten vor allem Wasserstoff(-Kerne) und Helium(-Kerne) (siehe primordiale Nukleosynthese). Aus den Wasserstoff- und Helium-Gaswolken bildeten sich durch Anziehungskräfte erste Sterne. In diesen Sternen entstanden durch Fusionsprozesse schwerere Elemente.

Synthese leichter Nuklide in jungen Sternen

Orionnebel: Hier entstehen aus Wasser­stoff­gas­wolken junge, heiße Sterne. Die Fusion von Wasserstoff zu Helium setzt ein.

Der Wasserstoffvorrat der Sonne und der anderer Sterne erschöpft sich mit der Zeit. Wenn ein Stern in seinem Zentralbereich den größten Teil des vorhandenen Wasserstoffs zu Helium „gebrannt“ hat, endet diese erste Brennphase. Der Stern kann dann seinen inneren Druck nicht mehr aufrechterhalten und fällt unter dem Einfluss der eigenen Schwerkraft in sich zusammen. Ab einer bestimmten Mindestmasse werden durch die Verdichtung und gleichzeitige Erhitzung Bedingungen erreicht, unter denen weitere Fusionsprozesse in Gang kommen, zunächst das so genannte Heliumbrennen. Je nach Ausgangsmasse setzen noch weitere Fusionsprozesse ein, siehe dazu Stern (Letzte Brennphasen).

Thermonukleare Kernfusionsreaktionen hängen sehr stark von der Temperatur im Inneren des Sterns ab. Daher bestimmt die Masse des Sterns, in welchem Maß die schwereren Elemente im Laufe des Sternenlebens gebrannt werden können. Leichtere Sterne kommen durch den geringeren Druck im Inneren oft über das Heliumbrennen nicht hinaus, Sterne wie unsere Sonne produzieren hauptsächlich die leichteren Elemente bis zum Kohlenstoff, während Sterne, die deutlich schwerer sind als die Sonne, sämtliche Elemente bis hin zum Eisen erzeugen können. Hier endet die positive Energiebilanz der Fusionsreaktionen. Der innere Kern solcher Riesensterne besteht dann aus Eisen, ihm folgen die anderen Elemente in Schichten nach außen, ein Wasserstoff-Helium-Gemisch bildet die äußerste Schicht.

Dass Sterne in ihrem Aufbau zuletzt einem Zwiebelschalenmuster entsprechen, erkannte in den 1940er Jahren Fred Hoyle. Seine Berechnungen zeigten, dass Sterne mit der fortschreitenden Aufzehrung ihres nuklearen Brennstoffs in ihrem Aufbau zunehmend uneinheitlicher werden und dass dies wieder höhere Temperaturen und Dichten in ihrem Inneren bedingt. Das Modell stimmt überraschend gut mit den gemessenen Elementhäufigkeiten im Universum überein. Wie oft sich der Zyklus aus Kontraktion, Aufheizung und Entzündung neuen, schwereren Brennstoffs wiederholt, hängt nur von der Masse des Sterns ab. Die Sternentwicklung treibt die Nukleosynthese an, und gleichzeitig treibt die Nukleosynthese wieder die Sternentwicklung.

Synthese schwerer Nuklide

Weiße Zwerge

Etwa beim Element Eisen kommt die Fusion zum Stillstand. Eine Fusion von Eisen in noch schwerere Elemente kann keine Energie mehr freisetzen, ist also als thermonuklearer Prozess nicht möglich. Der Stern erlischt und zieht sich unter seiner eigenen Schwerkraft zusammen. Sein weiteres Schicksal hängt von seiner ursprünglichen Masse ab. Bei einer Masse in der Größenordnung unserer Sonne oder darunter wird der Stern einen Teil seiner äußeren Hülle abstoßen. Er endet als schwach leuchtender Weißer Zwerg, dessen weitere Abkühlung noch Milliarden von Jahren dauern kann.

Synthese schwerer Nuklide in Supernovae

Der Homunkulusnebel ent­stand vor 100 bis 150 Jahren durch Eruptionen des extrem massereichen Sterns Eta Carinae. Schwere Sterne erzeugen ge­gen Ende ihrer Leucht­phase schwe­rere Atomkerne und stoßen diese in Form von Wolken aus.

Hatte der Stern anfänglich eine Masse von mehr als 8 Sonnenmassen, schreitet die Kontraktion besonders schnell voran, der Stern kollabiert. Bei dieser schnellen Verdichtung wird die Gravitationsenergie also sehr schnell freigesetzt, erhöht die Temperatur stark und bewirkt damit eine explosionsartige Ausweitung der möglichen Kernreaktionen im gesamten Sternvolumen. Innerhalb von ein bis zwei Tagen nimmt die Helligkeit des bis dahin unscheinbaren Sterns so stark zu, dass er, wie von Tycho Brahe 1572 beschrieben (siehe SN 1572), heller als alle Planeten erscheint und selbst am Tag mit bloßem Auge beobachtbar ist: eine Supernova. Dieser Leuchtkraftausbruch dauert wenige Tage. Der äußere Teil der Sternenmaterie, manchmal mehr als die Hälfte der gesamten Masse, wird in den interstellaren Raum geschleudert.

In dieser explosiven Materiewolke entsteht die zweite Gruppe, die Elemente, die schwerer als Eisen sind. Diese Reaktionen werden vor allem von Neutronen bewirkt, die unter den im Sterninneren herrschenden Bedingungen freigesetzt werden und als ungeladene Teilchen vielfältige Kernreaktionen auslösen können. Atomkerne fangen in schnell aufeinander folgenden Schritten etliche Neutronen ein (r-Prozess). In nachfolgenden Betazerfällen entstehen dann aus den neutronenreichen Kernen stabile Nuklide mit erhöhter Protonenzahl, die schweren Elemente jenseits des Eisens.

Die turbulenten Vorgänge in einer Supernova sorgen also nicht nur dafür, dass die Sterne die in ihnen gebildeten Elemente in den Weltraum freigeben, sondern sie erzeugen gleichzeitig eine ganz neue Gruppe von schweren chemischen Elementen. Supernovae sind damit die Motoren eines andauernden Transmutationsprozesses; ihr Streumaterial bildet die Ausgangsmaterie für die nächste Generation von Sternen und Planeten. Mit zunehmendem Alter des Universums nimmt daher die Menge an schweren Elementen zu. So hat die Supernova SN 2006gy in der Galaxie NGC 1260 150 Sonnenmassen gehabt und bei ihrer Explosion schätzungsweise 20 Sonnenmassen allein an Nickel in das Universum abgegeben.

In Supernovae bilden sich durch Spallation (Zertrümmerung von Atomkernen) auch die leichten Elemente Lithium, Beryllium und Bor, die bei den Fusionsreaktionen im jungen Stern „übergangen“ wurden.

Entstehung der einzelnen chemischen Elementgruppen

Über die genauere Entstehung und Verteilung der einzelnen chemischen Elemente im Universum zeichnen Astro- und Kosmochemie folgendes Bild. Vor rund 13,8 Milliarden Jahren begann das Universum sich von einem einzigen Punkt aus auszudehnen (Urknall, „Big Bang“), wobei es am Anfang unvorstellbare Energiemengen und -dichte aufwies (Temperatur um 1032 Kelvin). Noch bevor es auch nur ein einziges Atom irgendeines Elementes gab, nur 10−32 Sekunden nach dem Urknall, kühlte das Universum auf ca. 1028 Kelvin ab. Unter diesen Bedingungen konnten in dem heißen „Energiebrei“ des jungen Universums erste Elementarteilchen entstehen: die Quarks, Gluonen und Leptonen.

Das Universum kühlte sich weiter ab – so weit, dass die bisher als Plasma vorliegenden Quarks zu Protonen und Neutronen, den Nukleonen, kondensierten. Dies geschah ca. 10−7 Sekunden nach dem Urknall bei 1014 Kelvin. Es entstanden aber auch Antineutron (n*) und Antiproton (p). Materieteilchen und Antimaterieteilchen vernichten sich seither gegenseitig unter Umwandlung in Energie. Beispiel:

p+ + pPhotonen   (= Energie)

Dieser Vorgang kann auch in umgekehrter Richtung verlaufen (Paarbildung), im expandierenden Universum verminderte sich allerdings die Temperatur, so dass der Vorgang nicht mehr thermisch abläuft. Als das Universum jedoch eine Temperatur von weniger als 1014 Kelvin erreicht hatte und sich alle Antimaterieteilchen mit Materieteilchen vernichtet hatten, blieb (vermutlich durch einen Mechanismus ähnlich der CP-Verletzung) nur ein „winziger“ Rest, ein „kleiner Überschuss“ an Materie übrig. Die stabilsten und häufigsten Vertreter dieser normalen Materie sind Protonen, Neutronen und Elektronen.

Erste Fusionsprozesse nach dem Urknall

Die primordiale Nukleosynthese ist die erste Aktion nach dem Urknall. Aus den frei umherfliegenden Nukleonen entstanden nun etwa 10−2 Sekunden nach dem Urknall auch Kerne von schwerem Wasserstoff (Deuterium, D) und Heliumisotopen (He).

Nur die Atomkerne von Wasserstoff (1H und 2D) und Helium (3He und 4He) neben Spuren von Lithium (7Li) wurden während dieser primordialen Nukleosynthese gebildet – in einem Verhältnis von 25 Prozent Helium-4 und 75 Prozent Wasserstoff. Die heute zu beobachtenden schwereren Elemente stammen also aus Fusionsreaktionen in Sternen und damit aus viel späterer Zeit. Die erste Fusion von Wasserstoff zu Helium geschah somit lange bevor sich aus dem Wasserstoffgas erste Fixsterne bilden konnten: Die primordiale Nukleosynthese dauerte nur etwa drei Minuten und fand gleichzeitig überall im gesamten Universum statt. Die Temperatur betrug zu diesem Zeitpunkt noch 1010 Kelvin. Danach fielen Temperatur und Dichte des Universums unter für die für eine Kernfusion erforderlichen Werte.

Fünf Minuten nach dem Urknall ist die Teilchendichte des Universums dann so weit gesunken, dass die primordiale Nukleosynthese endete. Die noch übrig gebliebenen freien Neutronen zerfielen im Verlauf der nächsten Minuten.

Als die Temperatur $ T $ unter die entsprechende Bindungsenergie (E > kBT) der Hüllenelektronen gesunken war, vereinigten sich die Atomkerne mit Elektronen zu den ersten Atomen

p+ + e → H-Atom   (Wasserstoff).

Das Zeitalter der atomaren Materie begann mit dem chemischen Element Wasserstoff. Dass die Häufigkeit von Lithium in den Atmosphären früher Sterne um den Faktor zwei bis drei geringer ist, als die gegenwärtigen Modelle der kosmologischen Nukleosynthese vorhersagen (die sich beim Häufigkeitsverhältnis von Wasserstoff zu Helium als zuverlässig erwiesen haben), wird als Primordiales Lithiumproblem bezeichnet.

Erste stellare Kernfusion: Wasserstoff fusioniert zu Helium

Das All dehnt sich seit dem Urknall aus und kühlt ab. Es dauerte 1013 Sekunden (300.000 Jahre), bis sich das Gasgemisch aus Wasserstoff (H) und einigen Prozent Helium (He) aufgrund der Gravitationswirkung zu dichten Wolken zusammenziehen konnte. Dies ging mit einer so starken Temperaturerhöhung einher, dass in ihren Zentren schließlich die notwendige Aktivierungsenergie für weitere Fusionsprozesse zur Verfügung stand. Sterne leuchteten auf, wie im Orionnebel, und in ihnen verschmolzen beim so genannten stellaren Wasserstoffbrennen die Atomkerne von Wasserstoff zu Helium – die dafür nötige Temperatur liegt bei ca. 10 Millionen Kelvin.

Wenn Deuterium D beteiligt ist, wird der entsprechende Prozess auch „Deuteriumbrennen“ genannt.

Reaktionen (Auswahl)

D + D T + p + 04,03 MeV
D + T 4He + n + 17,588 MeV (größter Wirkungs­querschnitt)
D + D 3He + n + 03,268 MeV
D + 3He 4He + p + 18,34 MeV

Auch in der Sonne finden unter Energiefreisetzung Fusionsreaktionen mit dem Produkt 4He statt, und zwar in Form der Proton-Proton-Reaktion. Zudem findet in der Sonne ein Kohlenstoff-katalysierter Fusionszyklus statt, der CNO- oder Bethe-Weizsäcker-Zyklus, der etwa 1,6 Prozent der Energie des Sonnenhaushalts ausmacht. Sterne mit weniger als 0,08 Sonnenmassen erreichen das Stadium der Wasserstoff-Fusion übrigens nie – sie werden Braune Zwerge genannt.

Die Asche beider Formen des Wasserstoffbrennens ist Helium 4He. Wenn der Wasserstoffvorrat unserer Sonne in rund 5 Milliarden Jahren ausgebrannt sein wird, dann wird ihr Kern nur noch aus Helium bestehen. Sie wird sich dabei so weit aufblähen, dass sie die inneren Planeten Merkur und Venus verschluckt, dass ihre Scheibe am irdischen Himmel über 100-mal größer sein wird als heute.

Heliumbrennen

Beteigeuze und Rigel im Wintersternbild Orion
Beteigeuze: rötlich, oben links
Rigel: unten rechts  (fotogr. Aufnahme)
Position Alpha Ori.png
Beteigeuze α: oben links
Rigel β: unten rechts  (Sternkarte)



Ein Beispiel ist Beteigeuze im Orion, ein aufgeblähter Riesenstern (Spektralklasse M2, 700- bis 1000-facher Sonnendurchmesser), er besteht fast nur noch aus Helium und weist kaum noch Wasserstoffvorräte auf. Am Ende der Lebenszeit eines Sterns, wenn der Wasserstoff aufgebraucht ist, bläht ein Stern sich auf und im nun noch komprimierteren Zentrum setzt eine neue Kernreaktion ein: Das Heliumbrennen. Zusätzliche Energie kommt nun aus der Fusion von Helium zu Kohlenstoff und Sauerstoff (durch den Drei-Alpha-Prozess). Sterne der ersten Generation enthielten zunächst nur leichtere Elemente – Isotope von Kohlenstoff, Sauerstoff und schwereren Elementen kamen nur in Sternen späterer Generationen vor. Die Heliumfusion zu „Metallen“ wie Kohlenstoff, Sauerstoff und – später – auch zu Silicium liefert weniger Energie als das Wasserstoffbrennen. Sie benötigt höhere Drücke und Temperaturen als die Wasserstofffusion.

In der Astronomie bezeichnet man übrigens anders als in der Chemie jedes chemische Element mit einer Ordnungszahl höher als Helium als „Metall“, und die Metallizität gibt an, wie hoch der Gehalt eines Sternes an Elementen ist, die schwerer als Helium sind. Nur Wasserstoff und Helium sind ja – zusammen mit einigen Spuren von Lithium – die einzigen Elemente, welche im Universum nach dem Urknall vorhanden sind. Alle weiteren Elemente stammen aus ehemaligen Sternen, in denen sie durch Kernfusion erzeugt wurden, oder aus Supernova-Explosionen. Die Metallizität von Objekten des Weltraums kann daher auch als Indikator für seine stellare Aktivität aufgefasst werden.

Entstehung der „Metalle“

Schwerere Sterne können einen höheren Gravitationsdruck aufbauen, was die Fusion von schwereren Elementen bis zur Massenzahl 60 ermöglicht. Im Zentrum von Sternen ab 0,4 Sonnenmassen wird nach dem Wasserstoffbrennen zunächst die Kernreaktion von Helium zu Kohlenstoff möglich. Ab 0,7 Sonnenmassen wird die Kohlenstoff-Fusion, bei der je zwei Kohlenstoff-Atome zu Neon, Helium oder Natrium und Protonen sowie Magnesium und Protonen oder Neutronen fusionieren, möglich. Nach Wasserstoff und Helium sind daher die Elemente Kohlenstoff, Neon, Natrium und Magnesium die nächst häufigsten Grundstoffe im Universum, gefolgt von den Elementen Sauerstoff, Silicium, Phosphor und Schwefel.

Im Zuge des Heliumbrennens entsteht auch Sauerstoff. Ab etwa 1,4 Milliarden Kelvin verschmelzen je zwei Sauerstoff-Atomkerne (unter Abgabe von Helium, Wasserstoff, Protonen und Neutronen) zu Silicium-28, Phosphor-31 oder den beiden Schwefelisotopen Schwefel-31 und -32, unter Umständen auch zu Chlor und Argon.

Beteigeuze, der rote Schulterstern im Sternbild Orion, ist vermutlich ebenso ein solcher Stern wie Antares, der tiefrot strahlende Hauptstern im Skorpion. Beide gehören zur Kategorie Roter Riese, haben fast allen Wasserstoff verbraucht und das Heliumbrennen begonnen. Ein solcher Stern rußt: Kohlenstoff wird in ihm gebildet, und Ruß wird auch durch den Sternenwind aus ihm freigesetzt.

Sterne mit über 10 Sonnenmassen erreichen Zentraltemperaturen, in denen der Aufbau von Elementen bis hin zum Eisen möglich wird, und zwar umso schneller, je massereicher sie bei ihrer Bildung waren. Ein Stern mit 20 Sonnenmassen schleudert bei seiner Explosion als Supernova schließlich mehrere Sonnenmassen Materie in das All. Aus den Fetzen einer solchen Supernova-Explosion muss sich unsere Sonne einst als Stern der 3. oder 4. Generation gebildet haben – die Kosmochemie versucht, die Entstehung des Sonnensystems anhand der Häufigkeitsverteilung der Isotope aus jener Supernova-Explosion zu rekonstruieren. Bei Temperaturen von über 4 Milliarden Kelvin entstanden hier auch noch schwerere Elemente als nur Eisen, wobei schwere Atomkerne unter Energieaufnahme aus der Explosion beispielsweise zu Uranatomen verschmelzen: Bei jeder Atombombenexplosion und in jedem Kernkraftwerk können wir also aus den Brennelementen nur diejenigen Energien gewinnen, die bei der Explosion von Supernovae in jene überschweren Atomkerne hineingebrannt wurde – das thermonukleare Urfeuer, aus dem unser Sonnensystem entstand.

Das Kohlenstoffbrennen

Das Kohlenstoffbrennen ist eine Kernfusionsreaktion im Anschluss an das Heliumbrennen, durch die in massereichen Sternen mit einer Ausgangsmasse von mindestens 4 Sonnenmassen durch Fusion von Kohlenstoff Energie und schwerere Elemente erzeugt werden. Es tritt ein, nachdem die Fusion leichterer Elemente zum Erliegen gekommen ist. Es setzt hohe Temperaturen von über 6 · 108 Kelvin und Dichten von über 2 · 108 kg/m³ voraus. Beim Kohlenstoffbrennen werden in einer Reihe von Reaktionen jeweils zwei Kohlenstoffkerne 12C in andere Kerne umgewandelt – so entstehen die Elemente 24Mg (auch das Isotop 23Mg), 23Na, 20Ne und 16O

Das Kohlenstoffbrennen setzt erst ein, wenn das Heliumbrennen zum Stillstand gekommen ist. Während des Heliumbrennens wandeln die inzwischen roten, aufgeblähten Riesensterne Helium (He) immer schneller in Kohlenstoff und Sauerstoff um, bis nicht mehr genug Helium vorhanden ist, um die Fusion aufrechtzuerhalten: Der Kollaps setzt ein. Der inaktive, hauptsächlich aus Kohlenstoff und Sauerstoff bestehende Kern stürzt daraufhin durch die Gravitationskraft in sich zusammen, was einen Temperatur- und Dichteanstieg bewirkt, bis schließlich die Entzündungstemperatur für das Kohlenstoffbrennen erreicht ist. Durch den daraufhin erzeugten Strahlungsdruck stabilisiert sich der Kern, und seine weitere Kontraktion wird vorübergehend gestoppt. Durch die Temperaturerhöhung im Inneren des Sterns kann in einer Schale um den Kernbereich wieder das Heliumbrennen einsetzen, jetzt als so genanntes Schalenbrennen.

Neonbrennen

Während des Kohlenstoffbrennens reichert sich der Kernbereich mit den Reaktionsprodukten Sauerstoff, Magnesium und Neon (Ne) an, bis nach einigen tausend Jahren der Kohlenstoff aufgebraucht ist und sich der Kern abkühlt und wieder zusammenzieht. Diese Kontraktion bewirkt einen Temperaturanstieg, bis das Neonbrennen einsetzen kann. Um den Kern des Sterns setzt dann wiederum das Schalenbrennen von Kohlenstoff, weiter außen von Helium und Wasserstoff ein.

Sterne mit Massen zwischen 4 und 8 Sonnenmassen werden dabei nun instabil und stoßen ihre äußeren Hüllen über einen starken Sternwind ab, wodurch ein planetarischer Nebel gebildet wird. Zurück bleibt der Kern des Sterns als weißer Zwerg, bestehend aus Sauerstoff, Neon und Magnesium. Sterne mit Massen größer als 8 Sonnenmassen fahren mit dem Neonbrennen fort und fusionieren schließlich alle leichteren Elemente bis hin zu Eisen. Die einzelnen Brennphasen gehen dabei immer schneller ineinander über.

Sauerstoffbrennen

Das Sauerstoffbrennen betrifft Sterne mit einer Ausgangsmasse von mindestens 8 Sonnenmassen. Es setzt ein, nachdem die leichteren Elemente durch andere Fusionsprozesse umgewandelt wurden. Voraussetzung für das Sauerstoffbrennen sind hohe Temperaturen von mindestens 1,5 · 109 Kelvin und hohe Dichten von mindestens 1010 kg/m3.

Beim Sauerstoffbrennen fusionieren jeweils zwei Sauerstoffkerne 16O zu verschiedenen neuen Kernen, darunter Schwefel (S), Phosphor (P), Silicium (Si) und Magnesium (Mg). Dabei werden zudem Gammaquanten, Neutronen n, Protonen oder Wasserstoffkerne 1H (Proton) und Alphateilchen (Heliumkerne) 4He frei.

Während des vorangegangenen Neonbrennens bildete sich ein inaktiver Kern aus Sauerstoff und Magnesium im Zentralbereich des Sterns. In Ermangelung weiteren Brennstoffs kommt das Neonbrennen zum Erliegen. Der Strahlungsdruck reicht nun nicht mehr aus, um der Gravitation der eigenen Masse entgegenzuwirken, und der Kern wird weiter zusammengedrückt. Dies bewirkt einen neuerlichen Temperatur- und Dichteanstieg, bis die Entzündungstemperatur für das Sauerstoffbrennen erreicht ist und sich der Stern wieder stabilisiert. Um den Kern setzt im so genannten Schalenbrennen wieder das Neonbrennen ein; nach außen folgen Schalen mit Kohlenstoff-, Helium- und Wasserstoff-Fusionsprozessen.

Das Sauerstoffbrennen währt nur wenige Jahre. Während dieser Zeit reichert sich der Kern mit Silicium an, bis der Sauerstoff verbraucht ist. Danach kühlt der Kern erneut ab und wird durch die Gravitation komprimiert, bis das letzte Brennstadium einsetzt, das Siliciumbrennen.

Siliciumbrennen

Das Siliciumbrennen erfordert im Sternzentrum sehr hohe Temperaturen von mindestens 2,7 · 109  Kelvin und eine extrem hohe Dichte von mindestens 3 · 1010 kg/m3. Aufgrund ihrer großen Coulomb-Abstoßung können zwei 28Si–Kerne nicht direkt miteinander reagieren,[5] stattdessen werden die beim Sauerstoffbrennen erzeugten Kerne durch Photodesintegration von Photonen zerstört. Die Bruchstücke lagern in einer Reihe von Schritten Alpha-Teilchen, Protonen oder Neutronen an. Dadurch wird letztendlich das Eisenisotop 56Fe erreicht.[6]

Das Siliciumbrennen folgt auf das Sauerstoffbrennen, welches bei Versiegen des Sauerstoffs im Zentralbereich des Sterns endet. Wie auch am Ende der vorangegangenen Brennphasen wird der nun siliciumreiche Kern wegen des fehlenden Strahlungsdrucks durch die Gravitation weiter komprimiert. Temperatur und Dichte steigen dadurch, bis die Voraussetzungen für das Siliciumbrennen erreicht ist. Der Stern gelangt damit ein letztes Mal in ein hydrostatisches Gleichgewicht zwischen Gravitation und Strahlungsdruck. Während des Siliciumbrennens im Kern laufen weiterhin in Schalen um den Kern herum das Sauerstoff-, Neon-, Kohlenstoff-, Helium- und Wasserstoffbrennen ab.

Das Siliciumbrennen stellt das Ende der thermonuklearen Brennprozesse dar. Der Vorrat an Kernbrennstoff im Inneren wird beim Siliciumbrennen je nach Masse des Sterns in wenigen Stunden bis zu wenigen Tagen aufgebraucht, und dem Gravitationskollaps folgt die gewaltigste Explosion, die man im Universum kennt: eine Supernova des Typs II.

Überreste von Supernovae
Sig06-028.jpg
NGC 1952SST
Supernova1987A.jpg
Supernova 1987A


Entstehung schwerster Elemente in Supernovae

Elemente mit größeren Massenzahlen als 60 können hingegen durch stellare Brennprozesse nicht mehr entstehen. Die Fusion der entsprechenden Kerne verbraucht Energie (endotherm), statt sie freizusetzen. Da Elemente mit höheren Massenzahlen existieren, muss es weitere Möglichkeiten der Nukleosynthese geben. Nachdem der Stern vollkommen ausgebrannt ist, erlischt er nun endgültig. Der stabilisierende Strahlungsdruck fällt weg, und es kommt zum Kernkollaps. Er zieht sich unter Einwirkung seiner eigenen Schwerkraft zusammen.

  • Bei einer Masse, die in der Größenordnung unserer Sonne oder darunter liegt, wird der Stern einen Teil seiner äußeren Hülle abstoßen. Er endet als schwach leuchtender Weißer Zwerg, dessen weitere Abkühlung Milliarden von Jahren dauert.
  • Bei einer Masse ab 8 Sonnenmassen schreitet die Kontraktion sehr schnell voran, der Stern implodiert. Bei dieser Verdichtung wird eine große Menge an Gravitationsenergie freigesetzt, die für eine beträchtliche Erhöhung der Temperatur und damit für eine explosionsartige Ausweitung der möglichen Kernreaktionen im gesamten Sternvolumen sorgt. Innerhalb von ein bis zwei Tagen nimmt die Helligkeit des bis dahin unscheinbaren Sterns so gewaltig zu, dass er, wie von Tycho Brahe 1572 beschrieben, heller als alle Planeten erscheint und selbst am Tag mit bloßem Auge beobachtbar ist. Dieser gewaltige Leuchtkraftausbruch dauert nur wenige Tage. Eine Supernova ist entstanden, bei der der äußere Teil der Sternenmaterie, manchmal mehr als die Hälfte seiner gesamten Masse, in den interstellaren Raum geschleudert wird.

In dieser explosiven Materiewolke entsteht nun die zweite Gruppe von Elementen, die schwerer als Eisen sind. Sie werden vielmehr durch Neutronen- (s- und r-Prozess) und Protonenanlagerung (p-Prozess) gebildet. An diesen Reaktionen sind vor allem die Neutronen beteiligt, die im Inneren des zerberstenden Sterns unter den dort herrschenden extremen Bedingungen freigesetzt werden und als ungeladene Teilchen vielfältige Kernreaktionen auslösen können. Geraten Atomkerne in einen solchen Neutronenfluss, so fangen sie, ähnlich wie in einem Reaktor, in schnell aufeinander folgenden Schritten etliche Neutronen ein. In nachfolgenden Betazerfällen entstehen aus den neutronenreichen Kernen stabile Isotope mit erhöhter Protonenzahl, die letzten, schweren Elemente jenseits des Eisens.

Die turbulenten Zustände in den Materiewolken der Supernovae sorgen nicht nur dafür, dass die Sterne die in ihnen gebildeten Elemente in die Weiten des Universums freigeben, sondern sie erzeugen gleichzeitig eine ganz neue Gruppe von schweren chemischen Elementen. Supernovae am Ende der stellaren Nukleosynthese sind damit die Motoren eines bis in die ferne Zukunft währenden Schöpfungsprozesses; ihr Streumaterial bildet die Ausgangsmaterie für die nächste Generation von Galaxien, Sternen und Planeten.

Literatur

  • Claus E. Rolfs, William S. Rodney: Cauldrons in the Cosmos: Nuclear Astrophysics (Theoretical Astrophysics Series). Univ. of Chicago Pr., Chicago 1988, ISBN 0-226-72456-5.
  • Heinz Oberhummer: Kerne und Sterne: Einführung in die Nukleare Astrophysik. Barth, Leipzig/Berlin/Heidelberg 1993, ISBN 3-335-00319-5.
  • Vanessa Hill: From lithium to uranium – elemental tracers of the early chemical evolution. Cambridge Univ. Press, Cambridge 2005, ISBN 0-521-85199-8.
  • Andrew McWilliam, Michael Rauch: Origin and evolution of the elements. Cambridge Univ. Pr., Cambridge 2004, ISBN 0-521-75578-6.
  • Bernard E. J. Pagel: Nucleosynthesis and chemical evolution of galaxies. Cambridge Univ. Press, Cambridge 1997, ISBN 0-521-55958-8.

Einzelnachweise