Ein Schwerefeld ist ein Kraftfeld, verursacht durch Gravitation und bestimmte Trägheitswirkungen. Die Feldstärke des Schwerefeldes ist die Schwere, Formelzeichen $ {\vec {g}} $. Als auf die Masse bezogene Gewichtskraft eines Probekörpers hat sie die SI-Einheit N/kg = m/s2 und wird auch Schwerebeschleunigung oder Fallbeschleunigung genannt. Mit dieser Beschleunigung setzt sich ein frei fallender Körper in Bewegung.
$ {\vec {g}} $ ist eine vektorielle Größe mit Betrag und Richtung. Die Richtung heißt Lotrichtung. Der Betrag wird auch Ortsfaktor genannt, um zu betonen, dass $ g $ und damit auch das Gewicht eines Körpers vom Ort abhängt. In Deutschland beträgt die Fallbeschleunigung etwa 9,81 m/s2 = 981 Gal. Die Variation über die Erdoberfläche beträgt wenige Gal.
Im engeren Sinne – insbesondere in den Geowissenschaften – ist das Schwerefeld eines Himmelskörpers zusammengesetzt aus dessen Gravitationsfeld („Erdanziehung“) und der Zentrifugalbeschleunigung in dem Bezugssystem, das mit dem Körper rotiert und mit ihm im Gravitationsfeld anderer Himmelskörper frei fällt.
In der Himmelsmechanik werden oft nicht rotierende Bezugssysteme benutzt. Das Schwerefeld eines oder mehrerer Himmelskörper beruht dann nur auf Gravitation.
Im weiteren Sinne spricht man vom Schwerefeld in beliebig beschleunigten Bezugssystemen. Im Schwerefeld einer Zentrifuge dominiert die Zentrifugalkraft. In frei fallenden Bezugssystemen (Bsp. Raumstation) herrscht Schwerelosigkeit.
Neben der direkten Messung der Beschleunigung eines frei fallenden Körpers kann man den Betrag der Fallbeschleunigung aus der Schwingungsdauer eines Pendels berechnen. Ein modernes Gravimeter ist eine spezielle Federwaage und erreicht eine Präzision von einem Mikrogal, ca. 10−9 g. Man könnte damit eine Höhenverschiebung von weniger als einem Zentimeter registrieren. Schwankungen des Luftdrucks verursachen Änderungen in der gleichen Größenordnung. Gezeitenbeschleunigungen aufgrund der Inhomogenität der äußeren Gravitationsfelder, insbes. von Mond und Sonne, ändern g um viele Milligal.
Die Fallbeschleunigung ist die Vektorsumme aus einem Gravitations- und einem Zentrifugalanteil:
Für das Schwerefeld an einer Planetenoberfläche ergibt sich daraus: Die Gravitationsbeschleunigung ist von der Höhe abhängig, denn nach dem Gravitationsgesetz ist $ {\vec {g}}_{\mathrm {Gravitation} }\sim {\frac {1}{r^{2}}} $. Ebenfalls aus dieser Beziehung folgt, dass durch die Abplattung des Planeten der Abstand zum Planetenmittelpunkt an den Polen am kleinsten, die Gravitationswirkung also am größten ist. Dazu kommt, dass an den Polen des Himmelskörpers die Zentrifugalbeschleunigung verschwindet, weil der Abstand von der Rotationsachse Null ist. Am schwächsten ist das Schwerefeld somit am Äquator: Dort ist die Zentrifugalbeschleunigung maximal und der Gravitationswirkung entgegen gerichtet und der Abstand zum Planetenmittelpunkt am größten.
Die Richtung der Fallbeschleunigung heißt Lotrichtung. Diese Lotrichtung weist ungefähr zum Gravizentrum des Himmelskörpers hin. Abweichungen entstehen (von Schwereanomalien abgesehen) dadurch, dass die Zentrifugalbeschleunigung bei mittleren Breiten in einem schiefen Winkel zur Gravitationsbeschleunigung steht. Linien, die der Lotrichtung folgen, heißen Lotlinien. Sie sind die Feldlinien des Schwerefeldes. Bewegt sich ein Körper im Schwerefeld, so weicht mit zunehmender Geschwindigkeit die Richtung der wirksamen Beschleunigung von der Lotrichtung ab. Dies kann als Wirkung der Corioliskraft gedeutet werden.
Da die Gewichtskraft eine konservative Kraft ist, ist die Fallbeschleunigung als zugehörige Feldstärke der negative Gradient eines Potentials:
Hierbei ist $ W({\vec {r}}) $ das Schwerepotential. Es setzt sich – ähnlich wie die Fallbeschleunigung selbst – aus einem Gravitations- und einem Zentrifugalanteil zusammen:
Darin ist der erste Summand das Gravitationspotential, der zweite Summand, dessen Form voraussetzt, dass der Ursprung für den Ortsvektor $ {\vec {r}} $ zum Aufpunkt (dem Ort, für den das Potential berechnet wird) auf der Rotationsachse liegt, das Potential der Zentrifugalbeschleunigung. Das Integral erstreckt sich über das Volumen des Himmelskörpers. $ \rho $ ist die Dichte des Volumenelements $ \mathrm {d} V $ und $ l $ dessen Abstand vom Aufpunkt.
Flächen, auf denen das Schwerepotential konstant ist, heißen Potentialflächen oder Niveauflächen des Schwerefeldes. Sie werden von den Lotlinien rechtwinklig durchstoßen. Beim Übergang von einer Niveaufläche zu einer höheren muss Hubarbeit verrichtet werden, siehe auch Potential (Physik).
Wählt man als Bezugssystem nicht die Oberfläche eines Planeten, sondern ein beliebiges beschleunigtes Bezugssystem, so kann die dort wirksame „Fall“-Beschleunigung ebenfalls als Schwerefeld verstanden werden. Auch die in diesem Bezugssystem herrschenden Kräfte setzen sich aus Gravitations- und Trägheitskräften zusammen.
Große Himmelskörper nehmen unter dem Einfluss ihres Schwerefeldes eine Form an, die einer der Niveauflächen entspricht. Im Schwerefeld der Erde wird jene Niveaufläche, die ungefähr der Höhe des Meeresspiegels folgt, als Geoid bezeichnet. Sie ist durch die Zentrifugalbeschleunigung leicht abgeplattet. Diese Abplattung und die Abnahme der Erdbeschleunigung (Fallbeschleunigung auf der Erde) mit der Höhe wird von Normalschwereformeln berücksichtigt. Zusätzlich gibt es Schwereanomalien, d. h. globale, regionale und lokale Unregelmäßigkeiten, da die Masse sowohl in der Erdkruste (Gebirge, Kontinentalplatten) als auch tiefer (in Erdmantel und -Kern) nicht gleichmäßig verteilt ist. Die Satellitengeodäsie bestimmt das Geoid mit Hilfe der Beobachtung von Satellitenbahnen, siehe Gradiometrie. Die Schwereanomalien erreichen die Größenordnung 0,01 % und 0,01° in Betrag bzw. Richtung, siehe Lotabweichung, Schweregradient und Vertikalgradient. Bis zu 100 m liegen zwischen dem Geoid und dem mittleren Ellipsoid.
Der Wert der Erdbeschleunigung variiert wegen der Zentrifugalkraft, Erdabplattung und Höhenprofil regional um einige Promille um den ungefähren Wert ≈ 9,81 m/s2. Die Schwerebeschleunigung beträgt 9,832 m/s² an den Polen und 9,780 m/s² am Äquator. Die Anziehung am Pol ist somit um ca. 0,5 % größer als am Äquator. Wenn die Erdanziehungskraft auf einen Menschen am Äquator 800 N beträgt, so erhöht sie sich deshalb an den Erdpolen auf 804,24 N. 2013 wurde ermittelt, dass die Erdbeschleunigung mit 9,7639 m/s2 auf dem Berg Nevado Huascarán in den Anden (höchster Berg Perus) am geringsten ist.[1][2]
1901 wurde auf der dritten Generalkonferenz für Maß und Gewicht ein Standardwert, die Normfallbeschleunigung, auf gn = 9,80665 m/s2 festgelegt, ein Wert, der sich schon in verschiedenen Landesgesetzen etabliert hatte und der Definition technischer Maßeinheiten dient (DIN 1305).[3] Grundlage waren (aus heutiger Sicht überholte) Messungen von G. Defforges, Service Géographique de l’Armée, welche zu einem Wert für 45 Grad Breite, Meereshöhe extrapoliert wurden. Aufgrund der später entdeckten Schwereanomalien gibt es keinen einheitlichen Wert auf einem Breitengrad, erst recht keine Standardschwerkraft. Dementsprechend ist die Normfallbeschleunigung nicht als Erdbeschleunigung eines bestimmten Ortes oder als ein irgendwie berechneter Mittelwert definiert, sondern eine Festlegung.[4][5]
In Deutschland ist die ortsabhängige Erdbeschleunigung im Deutschen Hauptschwerenetz 1996 (DHSN 96) festgehalten, welches eine Fortsetzung des (westdeutschen) DHSN 82 ist. Es ist neben dem Deutschen Hauptdreiecksnetz für den Ort und dem Deutschen Haupthöhennetz für die Höhe die dritte Größe zur eindeutigen Festlegung eines geodätischen Bezugssystems. Das deutsche Schwerenetz stützt sich auf ca. 16.000 Messpunkte, die Schwerefestpunkte.
Historisch bedeutsam war der von Kühnen und Furtwänger vom Potsdamer Geodätischen Institut 1906 bestimmte Wert 9,81274 m/s2 in Potsdam. Potsdam wurde 1906 der Fundamentalpunkt für die Bestimmung der lokalen Erdbeschleunigung mittels Differenzbestimmung, bis das International Gravity Standardization Net 1971 eingeführt wurde.[6][7]
Mit Einführung des Integrierten Raumbezugs 2016 wurde das DHSN 96 durch das DHSN 2016 abgelöst.
Wäre die Erde eine nicht rotierende, homogene Kugel, so ergäbe sich ein linearer Anstieg der Schwerebeschleunigung von null am Erdmittelpunkt bis zu einem Maximum an der Erdoberfläche, siehe Gravitationstunnel. Tatsächlich ist die Erde in Schichten sehr unterschiedlicher Dichte aufgebaut, daher verläuft das Erdschwerefeld im Erdinneren nicht linear. Im Erdkern wächst die Schwerebeschleunigung mit dem Abstand vom Erdmittelpunkt zunächst monoton an. An der Kern-Mantel-Grenze (in ca. 2900 km Tiefe), nach deren Entdeckern Emil Wiechert und Beno Gutenberg auch Wiechert-Gutenberg-Diskontinuität genannt, erreicht sie ein Maximum von knapp 10,68 m/s². Dieser Effekt hat seine Ursache darin, dass der überwiegend metallische Erdkern mehr als doppelt so dicht wie der Erdmantel und die Erdkruste ist. Von dort bis zu ca. 4900 km nimmt sie zunächst wieder langsam bis auf 9,93 m/s² ab, steigt nochmals bei 5700 km auf 10,01 m/s² und sinkt dann monoton, bis sie an der Erdoberfläche etwa 9,82 m/s² erreicht.
In der Nähe der Erdoberfläche nimmt g um etwa 3,1 µm/s2 pro gestiegenem Meter ab.
In folgenden bemisst man in der Meteorologie das Geopotential in Bezug auf die Atmosphäre über Äquipotentialflächen. Für die Praxis hat man Hauptdruckflächen definiert (1000, 500, 200 hPa, und andere).
Außerhalb der Erde nimmt das Gravitationsfeld proportional zum Quadrat des Abstandes vom Erdmittelpunkt ab, während bei konstanter Position bzgl. Längen- und Breitengrad die Zentrifugalbeschleunigung proportional mit diesem Abstand zunimmt. Das Erdschwerefeld ist somit (wie das Schwerefeld jedes Himmelskörpers) prinzipiell unbegrenzt, wird aber mit wachsender Entfernung schnell schwächer. In niedrigen Satellitenhöhen von 300 bis 400 km nimmt die Erdbeschleunigung um 10 bis 15 % ab, in 5000 km um ca. 70 %. In einer Höhe von knapp 36.000 km heben sich beide Einflüsse exakt auf. Folglich bewegt sich ein Satellit auf einer solchen geostationären Umlaufbahn genau synchron mit der Erddrehung und verharrt auf demselben Längengrad.
Nur im Nahbereich eines schweren Himmelskörpers kann der Einfluss der anderen Himmelskörper in der Praxis vernachlässigt werden, da er dann sehr gering ist – der Einfluss des nahen Körpers ist dominierend.
Das Schwerepotential $ W $ der Erde wird auch Geopotential genannt. Je größer die lokale Schwerebeschleunigung, desto geringer der Abstand zwischen den Geopotentialflächen. Die Differenz zum Potential $ W_{0} $ des Geoids
wird geopotentielle Kote genannt (Einheit geopotentieller Meter gpm). Wird die geopotentielle Kote durch die Normalschwere geteilt, so ergibt sich die dynamische Höhe. Für mittlere Breiten entspricht die dynamische Höhe ungefähr der metrischen Höhe über dem Meeresspiegel.
Die Tabelle enthält die Gravitations-, die Zentrifugal- eines am Äquator auf der Oberfläche mitrotierenden Körpers und die resultierende Schwerebeschleunigung der Sonne, der acht Planeten, Plutos und einiger Monde des Sonnensystems. Das negative Vorzeichen der Zentrifugalbeschleunigung soll verdeutlichen, dass diese der Gravitationsbeschleunigung entgegengerichtet ist.
Himmels- körper |
Beschleunigung in m/s² | |||
---|---|---|---|---|
Gravitation[8] | Zentrifugal[9] | Schwere[8] | ||
Sonne | 274,0 | −0,0057 | 274,0 | |
1 | Merkur | 3,70 | −3,75·10−6 | 3,70 |
2 | Venus | 8,87 | −0,541·10−6 | 8,87 |
3 | Erde | 9,798 | −0,0339 | 9,780 |
3,5 | Mond | 1,62 | −12,3·10−6 | 1,62 |
4 | Mars | 3,71 | −0,0171 | 3,69 |
5 | Jupiter | 24,79 | −2,21 | 23,12 |
Io | 1,81 | −0,007 | 1,80 | |
Amalthea | 0,02 | −0,003 | 0,017 | |
6 | Saturn | 10,44 | −1,67 | 8,96 |
7 | Uranus | 8,87 | −0,262 | 8,69 |
Larissa | 0,0355 | −0,00186 | 0,0336 | |
8 | Neptun | 11,15 | −0,291 | 11,00 |
Pluto | 0,62 | −154·10−6 | 0,62 |