Die klassische Dichtefunktionaltheorie (DFT) (Klassische Dichtefunktionaltheorie) ist in der statistischen Physik eine Methode, das Verhalten eines Vielteilchensystems (etwa eines Gases in einem Behälter) zu beschreiben. Die DFT ist heutzutage eine Standardtechnik in der Flüssigkeitstheorie. Im Gegensatz zur älteren quantenmechanischen Dichtefunktionaltheorie wird sie auf Vielteilchensysteme angewandt, die mit der klassischen Physik beschrieben werden.
Die klassische DFT ermöglicht es für gegebene Parameter (u. a. Temperatur und von außen vorgegebene Wechselwirkungen) die ortsabhängige Dichte dieses Systems, Korrelationsfunktionen (u. a. Radiale Verteilungsfunktion) und thermodynamische Eigenschaften (Freie Energie, Zustandsgleichung, Phasenübergänge) zu berechnen. Die Stärke der DFT liegt darin, dass sie für inhomogene Systeme (ortsabhängige Teilchendichte) anwendbar ist.
Die Theorie wurde durch Robert Evans (Universität Bristol) 1979 begründet, der das zugrundeliegende Variationsprinzip bewies, wobei er auf ein entsprechendes Prinzip bei quantenmechanischen Vielteilchensystemen bei endlicher Temperatur von N. David Mermin (1965, eine Verallgemeinerung des Hohenberg-Kohn-Theorems) zurückgriff. Die Theorie hat historische Vorläufer in klassischen Untersuchungen von Johannes Diderik van der Waals über die Flüssig-Gas-Grenzfläche (1893) und von Lars Onsager über Phasenübergänge in Flüssigkristallen (1949).
Die klassische DFT ermöglicht es thermodynamische Eigenschaften und Korrelationsfunktionen für Systeme zu berechnen, deren Translationsinvarianz und/oder Rotationsinvarianz gebrochen ist. In inhomogenen Situationen können Effekte auftreten, die es in der homogenen Phase nicht gibt. Beispiele hierfür sind:
Auch die kristalline Phase lässt sich grundsätzlich im Rahmen der DFT behandeln, da man diese als periodische Dichte darstellen kann. Man kann also den Phasenübergang des Gefrierens berechnen.
Im Vergleich zu Simulationen (MC oder MD) ist die DFT-Lösung meist deutlich schneller zu berechnen.
Die klassische DFT ist nur im klassischen Limit anwendbar, also nicht dort, wo quantenmechanische Effekte dominieren. Ein Kriterium hierfür lautet, dass die thermische Wellenlänge viel kleiner als die mittlere nächste-Nachbar-Entfernung sein muss.
Das Prinzip der Dichtefunktionaltheorie beruht darauf, dass das thermodynamische Potenzial (z. B. die freie Energie
wobei
Im Folgenden verwendete Symbole:
Aus der Statistik des großkanonischen Ensembles ist die Gleichgewichtsdichte und das großkanonische Gleichgewichtspotential bekannt.
Das großkanonische Potential kann man allgemein (auch für Nichtgleichgewichtszustände) als Funktional einer beliebigen Wahrscheinlichkeitsdichte
Man kann mit einer Gibbs-Ungleichung beweisen, dass die Gleichgewichtsdichte
Der entscheidende Schritt ist der Übergang von einem Funktional von
Die Minimierung nach
Die innere Minimierung bedeutet, dass
Die Hamiltonfunktion kann man aufspalten
Hier ist
Einsetzen und Aufspalten:
Hierbei wurden die Funktionale freie Energie
Der Zusammenhang zwischen
wobei
Man teilt die intrinsische freie Energie in einen idealen und einen exzess Teil auf. Ersterer beschreibt den wechselwirkungsfreien Anteil (siehe ideales Gas), letzterer beschreibt die Wechselwirkungen innerhalb der Flüssigkeit.
Der ideale Teil lässt sich analytisch exakt berechnen (
Das Exzess-Funktional hängt von dem jeweiligen internen Wechselwirkungspotential
Für das ideale Gas ist
Für obiges Variationsprinzip gilt:
Durch Auflösen nach der Dichte erhält man die verallgemeinerte barometrische Höhenformel
Zur barometrische Höhenformel des idealen Gases kommt die Funktion
Da
Unterschiedliche Wechselwirkungen zwischen den betrachteten Teilchen (z. B. Lennard-Jones-Potential, harte Kugeln, weiche Repulsion zwischen Polymer-Knäuel) erfordern verschiedene Exzess-Funktionale. Ist jedoch für eine bestimmte (interne) Wechselwirkung ein Funktional bekannt, lassen sich damit sämtliche inhomogene Situationen (für sämtliche externe Potentiale) berechnen.
Nur für harte Stäbchen in einer Dimension lässt sich das Exzess-Funktional exakt konstruieren, für alle anderen wechselwirkenden Systeme müssen geeignete Approximationen verwendet werden. Somit liegt das zentrale Problem der DFT in der Beschaffung einer geeigneten Näherung für dieses Funktional. Die Funktionalentwicklung ausgehend von mikroskopischen Eigenschaften (von einer effektiven Hamiltonfunktion) erfordert viel Erfahrung. Es gibt jedoch einige Standardfunktionale, die sehr vielseitig einsetzbar sind.
Häufig verwendete Näherungen sind:
Neben der DFT, die Gleichgewichtszustände betrachtet, gibt es für Nichtgleichgewichtszustände auch die DDFT (dynamische DFT), mit der man die zeitliche Entwicklung eines Systems berechnen kann (z. B. kolloidale Suspensionen, die der Brownschen Bewegung unterliegen).