Die Polarisation einer Transversalwelle beschreibt die Richtung ihrer Schwingung. Ändert sich diese Richtung schnell und ungeordnet, spricht man von einer unpolarisierten Welle. Der Polarisationsgrad gibt den geordneten Anteil an. Bei in Ausbreitungsrichtung schwingenden Wellen, den Longitudinalwellen, gibt es keine Polarisation im eigentlichen Sinn bzw. man spricht von longitudinaler Polarisation.
Bauelemente, die unpolarisiertes Licht polarisieren oder polarisiertes Licht abhängig von der Art und Richtung der Polarisation aufteilen oder unterdrücken, heißen Polarisatoren.
Mathematisch werden die möglichen Polarisationen von Wellen der gleichen Wellenlänge und Frequenz als Elemente eines 2-dimensionalen Vektorraums aufgefasst. Was physikalisch eine Überlagerung von Zuständen ist, dem entspricht auf mathematischer Seite eine Linearkombination von Vektoren. Da beim Überlagern Amplitude ($ A $) und Phase ($ \omega t $) beachtet werden müssen, dienen als Skalarfaktoren komplexe Zahlen ($ A\,e^{-i\omega t} $): Die Polarisationszustände des Lichts bilden daher einen Vektorraum über dem Körper der komplexen Zahlen. Als Basis (mit der man jeden Vektor darstellen kann) werden einerseits gern die zwei (links- bzw. rechtsdrehenden) zirkular polarisierten Zustände verwendet, anderseits auch zwei beliebige linear polarisierte Zustände mit aufeinander senkrechten Schwingungsebenen. Jede Basis lässt sich durch die andere ausdrücken. So ist ein zirkular polarisierter Zustand eine Überlagerung von zwei linear polarisierten Zuständen mit zueinander senkrechter Schwingungsebene, aber auch ein linear polarisierter Zustand eine Überlagerung der zwei zirkular polarisierten. Die Lage der Schwingungsebene wird dabei durch die Phasendifferenz der zirkular polarisierten Zustände bestimmt. Werden Basiszustände mit unterschiedlicher Amplitude oder ein zirkular mit einem linear polarisierten Zustand überlagert, so erhält man elliptisch polarisiertes Licht.
Photonen sind Bosonen und können Spinkomponenten +1 oder −1 haben, was den beiden Möglichkeiten der zirkularen Polarisation entspricht (die Komponente Null kann nicht vorkommen, da sich das Photon mit Lichtgeschwindigkeit bewegt, siehe Helizität). Die Spinachsen zeigen dabei je nach Helizität in Ausbreitungsrichtung oder dagegen. Lineare Polarisation entsteht durch lineare Überlagerung der beiden zirkular polarisierten Zustände mit gleicher Amplitude, die Photonen haben dann für den Erwartungswert des Drehimpulses den Wert Null.
Bei der Beschreibung von Überlagerungen ist stets das Amplitudenverhältnis und die Phasenlage anzugeben.
Sind auch die absolute Intensität und der Polarisationsgrad von Interesse, so sind insgesamt vier Angaben notwendig, als vierdimensionaler reellwertiger Stokes-Vektor oder als zweidimensionaler komplexwertiger Jones-Vektor. Ist man nur an der Polarisation und nicht an der absoluten Intensität interessiert, wird oft die Poincaré-Kugel zur Darstellung der Polarisationszustände verwendet.
Quasimonochromatisches Licht kann alternativ auch durch die Kohärenzmatrix beschrieben werden. Die Beschreibung der Wirkung eines polarisationsverändernden optischen Elementes erfolgt dann durch Multiplikation mit einer entsprechenden Müller-Matrix beziehungsweise einer Jones-Matrix.
Die auf der Erde und im Universum überwiegend beobachtete Ausprägung elektromagnetischer Strahlung ist thermische Strahlung und damit zunächst unpolarisiert, das heißt, die Einzelwellen sind in ihren Eigenschaften statistisch verteilt; es handelt sich also um die Überlagerung einer Vielzahl von Einzelwellen mit unterschiedlichster Lage von Schwingungsebene und relativer Phase. Durch Reflexion und/oder Streuung entsteht daraus teilpolarisiertes Licht, bei dem ein Teil der Einzelwellen gleiche Eigenschaften hinsichtlich ihrer Polarisation aufweist und als Polarisationsmuster erscheint.
Schräge Reflexion an Grenzflächen, z. B. an einer Wasseroberfläche, trennt Licht teilweise nach seiner Polarisationsrichtung auf. Der in der Reflexionsebene polarisierte Anteil dringt eher ein, der dazu senkrechte Anteil wird eher reflektiert. Für die quantitative Abhängigkeit vom Einfallswinkel siehe Fresnelsche Formeln.
Das blaue Licht des Himmels ist von Molekülen und statistischen Dichteschwankungen der Luft gestreutes Sonnenlicht. Die Luft wird durch die einfallende Welle in zufällige Richtungen senkrecht zur Einfallsrichtung elektrisch polarisiert. Streulicht in Richtungen dieser Schwingungsebene (Streuwinkel 90°) schwingt in ebendieser Ebene, ist also vollständig polarisiert. Für die Abhängigkeit vom Streuwinkel siehe Rayleighstreuung. Das Himmelslicht ist jedoch durch Vielfachstreuung und Streuung an Partikeln nicht vollständig polarisiert.
Viele Insekten können linear polarisiertes Licht nach seiner Polarisationsrichtung unterscheiden und nutzen diesen Effekt, um sich zu orientieren. Bei der Honigbiene wurde dies durch Karl von Frisch erforscht.
Auch Fangschreckenkrebse,[3] die Wasserwanze Notonecta glauca, Große Mausohren (Myotis myotis)[4] und Wüstenameisen[5][6] sind dazu in der Lage, sowie Menschen, allerdings mit sehr geringem Kontrast (Haidinger-Büschel-Phänomen).
Elektromagnetische Strahlung (Licht, Radiowellen usw.) ist eine Transversalwelle mit jeweils rechten Winkeln zwischen dem Wellenvektor $ {\vec {k}} $, der in Ausbreitungsrichtung zeigt, und den Vektoren des elektrischen und magnetischen Feldes, $ {\vec {E}} $ bzw. $ {\vec {B}} $. Es ist willkürlich, ob als Polarisationsrichtung die Schwingungsrichtung des elektrischen oder des magnetischen Feldes gewählt wird. Allerdings bedeuten $ {\vec {E}} $ und $ {\vec {B}} $ für die Welle verschiedene Schwingungsrichtungen. Diese stehen aufeinander senkrecht. Aus der Zeit, als Licht noch als mechanische Schwingung des hypothetischen Äthers erklärt wurde, stammt eine Festlegung für die Bezeichnungen der beiden Polarisationsrichtungen, die sich später als die Schwingungsrichtung des magnetischen Feldvektors herausstellte.[7] Da die meisten Wechselwirkungen elektromagnetischer Strahlung mit Materie allerdings elektrischer Natur sind, wird die Polarisationsrichtung heute meist auf den elektrischen Feldvektor bezogen.
Wenn die Welle gebrochen, reflektiert oder gestreut wird, ist die Bezugsebene für die Bezeichnungen parallel und senkrecht jene Ebene, in der die ein- und die auslaufende Welle liegen. Im Fall von Funkwellen stellt die Erdoberfläche die „Bezugsebene“ dar und die Komponenten heißen in der Regel horizontal und vertikal.
Neben parallel und senkrecht polarisierten Wellen werden unter anderem bei der Beschreibung der Reflexion weitere Bezeichnungen genutzt. So spricht man von TM-polarisiertem Licht, wenn die Richtung des magnetischen Feldes senkrecht zu der durch Einfallsvektor und Flächennormale aufgespannten Ebene ("Einfallsebene") liegt (TM = transversal magnetisch; man spricht hierbei auch von parallel-, p- oder π-polarisiertem Licht, da das bei isotropen Materialien zum Magnetfeld senkrechte elektrische Feld in der Einfallsebene liegt), und von TE-polarisiertem Licht, wenn das elektrische Feld senkrecht auf der Einfallsebene steht (TE = transversal elektrisch; man spricht hierbei auch von senkrecht-, s- oder σ-polarisiertem Licht).[8] In Richtung des Brewster-Winkels wird TM-polarisiertes Licht verstärkt in das Medium gebrochen anstatt reflektiert, das heißt, auch für unpolarisiertes einfallendes Licht ist das beim Brewster-Winkel ausfallende Licht immer TE-polarisiert. Beide Begriffe sind nur im Zusammenhang mit der reflektierenden Fläche definiert.
Bei zirkular oder elliptisch polarisiertem Licht unterscheidet man hinsichtlich der Drehrichtung des E- oder H-Vektors im Bezug auf die Ausbreitungsrichtung. Man spricht hier von links- oder rechtsdrehendem polarisiertem Licht (für die Bezeichnungskonventionen siehe oben).
In der Laserspektroskopie wird die zirkuläre Polarisation anstelle von rechts und links in $ \sigma ^{+} $ („Sigma-Plus“) und $ \sigma ^{-} $ („Sigma-Minus“) aufgeteilt, die bei atomaren Übergängen zwischen Energieniveaus eine Änderung der magnetischen Quantenzahl $ m $ von +1 bzw. −1 bewirkt. Linear polarisiertes Licht ($ \Delta m=0 $ beim atomaren Übergang) wird als $ \pi $-polarisiertes Licht bezeichnet. Vorteil dieser Angabe ist die Unabhängigkeit vom Koordinatensystem (rechts und links); stattdessen bezieht sich die Angabe auf die gewählte Quantisierungsachse des Atoms.