Die kanonischen Gleichungen sind in der klassischen Mechanik die Bewegungsgleichungen eines Systems, das durch eine Hamiltonfunktion $ H=H(q,p,t) $ beschrieben wird, und werden deshalb auch Hamiltonsche Bewegungsgleichungen genannt. Sie lauten
Dabei bedeuten
Die kanonischen Gleichungen folgen direkt aus dem Hamiltonschen Prinzip durch ein erweitertes Variationsprinzip, bei dem Koordinaten und Impulse gleichberechtigt behandelt werden.
Die kanonischen Gleichungen sind eng mit den kanonischen Transformationen verknüpft, die über die Hamilton-Jacobi-Gleichung die Brücke zur Quantenmechanik schlagen. Einen ersten Hinweis darauf bietet die elegante Formulierung der kanonischen Gleichungen mit Poissonklammern:
Für eine beliebige Phasenraumfunktion $ A=A(q,p,t) $ des Systems kann man die totale Ableitung nach der Zeit deshalb schreiben als:
ausführliche Herleitung dieser Schreibweise s. Poisson-Klammer #Hamiltonsche Bewegungsgleichung.
An dieser Form erkennt man die Korrespondenz der klassischen Bewegungsgleichung einer Phasenraumfunktion mit der Heisenbergschen Bewegungsgleichung für Observable in der Quantenmechanik.