Magnetische Spannung

Magnetische Spannung

Version vom 29. Mai 2017, 15:26 Uhr von 83.150.9.168 (Diskussion) (→‎Magnetische Spannung um einen Linienleiter)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Physikalische Größe
Name Magnetische (Quell-)Spannung
Magnetische Durchflutung
Formelzeichen $ V_{\mathrm {m} },U_{\mathrm {m} },\Theta $
Größen- und
Einheitensystem
Einheit Dimension
SI A I
Gauß (cgs) Gb = Bi/(4π) L1/2·M1/2·T−1
esE (cgs) statA L3/2·M1/2·T−2
emE (cgs) Gb = Bi/(4π) L1/2·M1/2·T−1

Die magnetische Spannung oder magnetische Quellspannung (Formelzeichen: $ V_{\mathrm {m} } $ oder auch $ U_{\mathrm {m} } $) ist in der Elektrodynamik das Wegintegral über die magnetische Feldstärke $ H $. Im Falle eines geschlossenen Weges, auch als Umlauf bezeichnet, spricht man von der magnetischen Durchflutung $ \Theta $, kurz Durchflutung. Die Durchflutung ist gleich dem durch diesen Umlauf eingeschlossenen totalen elektrischen Strom, der sich aus dem Leitungsstrom plus dem Verschiebungsstrom zusammensetzt.

Die magnetische Spannung hat formale Ähnlichkeit mit der elektrischen Spannung $ U $. Sie ist von Bedeutung im magnetischen Kreis.

Einheiten

Die Einheit der magnetischen Spannung im SI ist das Ampere. Früher wurde das Ampere als Einheit der Durchflutung Amperewindung (Einheitenzeichen: Aw, AW) genannt, da der gleiche Strom den Umlauf mehrfach „durchwinden“ kann; bei einer Zylinderspule ist die magnetische Spannung (in guter Näherung) die Stromstärke in der Spule multipliziert mit der Windungszahl.

In dem Gaußschen Einheitensystem und Elektromagnetischen Einheitensystem (EMU) wird für die Durchflutung die Einheit Gilbert (Einheitenzeichen: Gb) verwendet.

Durchflutungsgesetz

Das Durchflutungsgesetz beschreibt den Zusammenhang zwischen der magnetischen Durchflutung und dem eingeschlossenen Strom.

$ \Theta =\oint _{\mathcal {S}}{\vec {H}}\cdot \mathrm {d} {\vec {s}}=I $

Hopkinsonsches Gesetz

Mit dem magnetischen Fluss $ \Phi $ und dem magnetischen Widerstand $ R_{\mathrm {m} } $ hängt die magnetische Spannung $ V_{\mathrm {m} } $ über das hopkinsonsche Gesetz

$ V_{\mathrm {m} }=R_{\mathrm {m} }\cdot \Phi $

zusammen. Dieses Gesetz ist das magnetische Äquivalent zum ohmschen Gesetz für elektrische Stromkreise. Im Gegensatz zum elektrischen Stromkreis (unter Abwesenheit veränderlicher Magnetfelder) ist die Summe aller Spannungen in einem Maschenumlauf jedoch nicht Null, sondern die magnetische Durchflutung.

Magnetische Spannung um einen Linienleiter

Aufteilung der magnetischen Durchflutung $ \Theta $ in mehrere, gleich große Teilspannungen $ V_{\mathrm {m} }(\alpha ) $ um einen Leiter.

Um einen geraden elektrischen Linienleiter stellt man sich Ebenenfächer vor. Man kann in diesem Fall die magnetische Spannung abhängig vom Winkel $ \alpha $ zwischen zwei Flächen angeben:

$ V_{\mathrm {m} }(\alpha )={\frac {\alpha }{2\,\pi }}\,\Theta ={\frac {\alpha }{2\,\pi }}\,I $

Würde man ein Bündel aus $ n $ Leitern, von denen jeder vom Strom $ I $ durchflossen wird, betrachten, wäre $ \Theta =n\cdot I $.

Für die magnetische Feldstärke $ H $ gilt der Zusammenhang

$ H={\frac {\mathrm {d} V_{\mathrm {m} }(\alpha )}{\mathrm {d} s}}={\frac {\mathrm {d} V_{\mathrm {m} }(\alpha )}{r\,\mathrm {d} \alpha }} $,

wobei $ \mathrm {d} s $ ein Segment der Feldlänge $ l $ der magnetischen Feldstärke mit $ l=\alpha \cdot r $ und $ r $ der Radius des Kreises um den Strom $ I $, auf dem das Feld gemessen wird, ist. In dieser Formel ist $ V_{\mathrm {m} } $ gleichbedeutend mit $ \Theta $.

Magnetische Durchflutung einer Spule

Im Falle einer Zylinderspule mit der Windungszahl $ N $, die von einem Strom $ I $ durchflossen wird, gilt in guter Näherung:

$ \Theta =\sum _{n}R_{\mathrm {m} ,n}\,\Phi _{n}=\sum _{n}\Theta _{n}=N\cdot I $.

Das gilt auch für andere Spulenformen, bei denen kaum Magnetfeldlinien zwischen den Windungen hindurchtreten oder wenn ein Magnetkreis (Eisenkern oder Ferritkern) aus einem Material hoher relativer Permeabilität besteht. In letzterem Falle kann aus dessen Eisenweglänge und der Durchflutung rückwärts auf die magnetische Feldstärke geschlossen werden und – wenn die Permeabilitätszahl bekannt ist – auf die magnetische Flussdichte.

Literatur

  • Günter Springer: Fachkunde Elektrotechnik. 18. Auflage, Verlag Europa-Lehrmittel, Wuppertal, 1989, ISBN 3-8085-3018-9.
  • Horst Stöcker: Taschenbuch der Physik. 4. Auflage, Verlag Harry Deutsch, Frankfurt am Main 2000, ISBN 3-8171-1628-4.