Physikalische Größe | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Magnetische (Quell-)Spannung Magnetische Durchflutung | |||||||||||||||
Formelzeichen | ||||||||||||||||
|
Die magnetische Spannung oder magnetische Quellspannung (Formelzeichen:
Die magnetische Spannung hat formale Ähnlichkeit mit der elektrischen Spannung
Die Einheit der magnetischen Spannung im SI ist das Ampere. Früher wurde das Ampere als Einheit der Durchflutung Amperewindung (Einheitenzeichen: Aw, AW) genannt, da der gleiche Strom den Umlauf mehrfach „durchwinden“ kann; bei einer Zylinderspule ist die magnetische Spannung (in guter Näherung) die Stromstärke in der Spule multipliziert mit der Windungszahl.
In dem Gaußschen Einheitensystem und Elektromagnetischen Einheitensystem (EMU) wird für die Durchflutung die Einheit Gilbert (Einheitenzeichen: Gb) verwendet.
Das Durchflutungsgesetz beschreibt den Zusammenhang zwischen der magnetischen Durchflutung und dem eingeschlossenen Strom.
Mit dem magnetischen Fluss
zusammen. Dieses Gesetz ist das magnetische Äquivalent zum ohmschen Gesetz für elektrische Stromkreise. Im Gegensatz zum elektrischen Stromkreis (unter Abwesenheit veränderlicher Magnetfelder) ist die Summe aller Spannungen in einem Maschenumlauf jedoch nicht Null, sondern die magnetische Durchflutung.
Um einen geraden elektrischen Linienleiter stellt man sich Ebenenfächer vor. Man kann in diesem Fall die magnetische Spannung abhängig vom Winkel
Würde man ein Bündel aus
Für die magnetische Feldstärke
wobei
Im Falle einer kurzen Zylinderspule mit der Windungszahl
Das gilt auch für andere Spulenformen, bei denen kaum Magnetfeldlinien zwischen den Windungen hindurchtreten oder wenn der Magnetkreis aus einem Material hoher relativer Permeabilität besteht (Eisenkern oder Ferritkern). In dem Fall befindet sich nahezu das gesamte Feld im Kern. Solche Kerne sind so konstruiert, dass entlang des Eisenweges nahezu ein konstanter Eisenquerschnitt vorliegt. Daher kann aus dessen im Datenblatt angegebener mittlerer Eisenweglänge und der Durchflutung rückwärts nicht nur auf die magnetische Feldstärke geschlossen werden, sondern – wenn die Permeabilitätszahl bekannt ist – auch auf die magnetische Flussdichte. So kann kontrolliert werden, ob der Kern noch unterhalb der materialtypischen Sättigungsflussdichte betrieben wird.
Besitzt die Spule einen Kern mit Luftspalt, tritt ein Großteil der magnetischen Spannung dort auf und der Kern gerät erst bei einer höheren Durchflutung in die Sättigung. Geht man davon aus, dass das am Luftspalt austretende Feld vollständig wieder in den Kern eintritt, ergibt sich eine Reihenschaltung der magnetischen Widerstände des Kernes und des Luftspaltes. Der magnetische Widerstand des Luftspaltes ist wegen der dort vorliegenden Permeabilitätszahl 1 auch bei einem schmalen Spalt groß gegenüber dem magnetischen Widerstand des Kernes.