Abschirmung bezeichnet in einem Mehrelektronen-Atom die Verringerung der anziehenden Wechselwirkung zwischen einem Elektron und dem Kern durch die Wirkung der übrigen Elektronen.
Die Energie $ \varepsilon _{n,l} $ eines Elektrons hängt im Zentralfeldmodell des Atoms ab von den Quantenzahlen $ n $ und $ l $:
mit
Für die Radialteile der zugehörigen Einelektron-Wellenfunktionen $ \Psi _{n,l,m}=R_{n,l}(r)\cdot Y_{l,m}(\theta ,\varphi ) $ wurde von John C. Slater folgender analytischer Ausdruck vorgeschlagen:
mit dem Normierungsfaktor $ N $.
Einelektronen-Wellenfunktionen mit so ermittelten Radialanteilen heißen Slater-Orbitale.
Die Abschirmkonstante $ \sigma _{n,l} $ und die effektive Quantenzahl $ n' $ werden wie folgt ermittelt:
Daraus folgt folgende Tabelle:
n | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
n' | 1,0 | 2,0 | 3,0 | 3,7 | 4,0 | 4,2 |
Da die Bahnen unterschiedlicher Drehimpulsquantenzahl $ l $ unterschiedlichen Abschirmungen unterliegen, wird im Rahmen des Sommerfeldschen Atommodells die Bahnentartung (sprich die Energiegleichheit von Zuständen gleicher Hauptquantenzahl $ n $, aber unterschiedlicher Drehimpulsquantenzahl) aufgehoben.