Eine Zentralkraft ist eine Kraft, die immer auf einen festen Punkt (das Kraftzentrum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z ) bezogen ist, also auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z zu bzw. von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z weg zeigt.[1]
Viele Zentralkräfte sind (konservative) Gradientenfelder zu einem kugelsymmetrischen Zentralpotential (auch Zentralfeld, siehe unten). In diesem Artikel werden jedoch auch nichtkonservative Zentralkräfte behandelt, die insbesondere keine Radialsymmetrie aufweisen müssen.
Die Gravitation und die Coulomb-Kraft sind Beispiele für konservative Zentralkräfte. Genau genommen hängt es vom Bezugssystem ab, ob die genannte Definition zutrifft; so ist etwa die Gravitation nur im Schwerpunktsystem (und allen relativ zu ihm ruhenden Systemen) eine Zentralkraft.
Unter dem Einfluss einer allgemeinen Zentralkraft bleibt der Drehimpuls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec {L} eines Massenpunktes im Bezugssystem mit dem Ursprung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z erhalten. Für den Drehimpuls
gilt nämlich
wobei im letzten Schritt verwendet wird, dass die Kraft
parallel zum Ortsvektor liegt.
Das ist gerade der Inhalt des zweiten Keplerschen Gesetzes, das besagt, dass der Ortsvektor pro Zeit die gleiche Fläche überstreicht. Denn für eine kleine Änderung der Zeit $ \mathrm {d} t $ gilt:
Beim letzten Ausdruck ist ablesbar, dass die Fläche des überstrichenen Dreiecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle A=\frac 12 ||\vec r \times \mathrm d\vec r ||} pro Zeit konstant ist (der Kreissektor kann durch ein Dreieck angenähert werden, da es sich um eine infinitesimale Änderung in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec r handelt). Die einzige Voraussetzung für das zweite Keplersche Gesetz ist also nur, dass die Kraft in Radialrichtung zeigt.
Aus der Drehimpulserhaltung folgt auch, dass die Bewegung in der Ebene bleibt, in der die Anfangswerte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec {r} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot{\vec {r}} liegen. Der Drehimpulsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec L muss nämlich immer senkrecht auf dem Ortsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \vec r} stehen, was daraus folgt, dass das Spatprodukt mit zwei gleichen Vektoren immer null ist: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle 0 =\vec r \cdot (\vec r \times \dot \vec r )= \vec r \cdot \frac 1m \vec L} .
Unter einem Zentralpotential versteht man ein Potential, das nur vom Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r zum Kraftzentrum abhängt. Es gilt also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(\vec r) = V(|\vec r|) = V(r) . Von einem Zentralpotential lassen sich nur Zentralkraftfelder ableiten, die keine Winkelabhängigkeit besitzen, die also kugelsymmetrisch sind.
Das wird klar, wenn man sich den Nabla-Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec \nabla in Kugelkoordinaten ansieht:
Damit ein Kraftfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec F = -q\vec \nabla \Phi nur in Radialrichtung zeigt, müssen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{\partial}{\partial\theta}\Phi = 0 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{\partial}{\partial\varphi} \Phi = 0 sein. Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Phi aber nicht von den Winkeln abhängt, dann wird es auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec F nicht.
Eine Konsequenz aus dem vorigen Abschnitt ist, dass winkelabhängige Zentralkraftfelder nicht konservativ sind; es gibt kein Zentralpotential, aus dem sie abgeleitet werden können. In ihnen hängt die verrichtete Arbeit vom Weg ab. Es gilt dann zwar der Flächensatz (Drehimpulserhaltung), nicht aber die Energieerhaltung.
Die Bahn eines Massenpunktes in einem Zentralfeld liegt bei Gültigkeit der klassischen Mechanik in einer Ebene. Wichtige Systeme, die mit einer Zentralbewegung modelliert werden, sind:
Das (physikalische) Kraftzentrum liegt
Die Zentripetalkraft wird ermittelt aus der Geschwindigkeit und der Bahnkrümmung der Bewegung eines Körpers an seinem aktuellen Ort und weist zum Mittelpunkt des (lokalen) Krümmungskreises, der nicht mit dem physikalischen Kraftzentrum übereinstimmen muss.