Brillouin-Funktion

Brillouin-Funktion

Datei:Brillouin Function.svg
Brillouin-Funktion
für verschiedene Werte von J

Die Brillouin-Funktion $ B(x) $ (nach dem französisch-amerikanischen Physiker Léon Brillouin (1889–1969)) ist eine spezielle Funktion, die aus der quantenmechanischen Beschreibung eines Paramagneten hervorgeht:

$ {\begin{alignedat}{2}B_{J}(x)&={\frac {2J+1}{2J}}\cdot \coth \left({\frac {2J+1}{2J}}\,x\right)&&-{\frac {1}{2J}}\cdot \coth \left({\frac {1}{2J}}\,x\right)\\&=\left(1+{\frac {1}{2J}}\right)\cdot \coth \left[\left(1+{\frac {1}{2J}}\right)x\right]&&-{\frac {1}{2J}}\cdot \coth \left({\frac {1}{2J}}\,x\right)\end{alignedat}} $

Die Formelzeichen stehen für folgende Größen:

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J in der physikalischen Anwendung für die Gesamtdrehimpulsquantenzahl
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \coth für den Kotangens hyperbolicus.

Verwendung

Mit der Brillouin-Funktion kann die Magnetisierung $ M $ eines Paramagneten der Stoffmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N in einem äußeren Magnetfeld formuliert werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} M &= N m B_J(\xi)\\ \Leftrightarrow B_J(\xi) &= \frac{M}{N m}. \end{align}

mit

  • dem magnetischen Moment $ m $ eines Teilchens
  • dem Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \xi = \frac{m B}{k_\mathrm B \, T} = \frac{g \mu_\mathrm B \, J B}{k_\mathrm B \, T}
    • dem Betrag Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B der magnetischen Flussdichte des angelegten äußeren Magnetfeldes
    • der Boltzmann-Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_\mathrm B
    • der absoluten Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T
    • dem Landé-Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g
    • dem Bohrschen Magneton $ \mu _{\mathrm {B} } $.

Eine weitere, halb-klassische Beschreibung eines Paramagneten geschieht mit Hilfe der Langevin-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L , die sich im Limes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J \to \infty und zugleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g \mu_\mathrm B \to 0 aus der Brillouin-Funktion ergibt (wobei das magnetische Gesamtmoment konstant bleibt):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} M &= N m L(\xi)\\ \Leftrightarrow L(\xi) &= \frac{M}{N m}. \end{align}

Literatur

  • Torsten Fließbach: Statistische Physik – Lehrbuch zur Theoretischen Physik IV. Elsevier-Spektrum Akademischer Verlag, Heidelberg 2006.

Weblinks