Die Brillanz beschreibt in der Optik und Lasertechnik die Bündelung eines Strahls von elektromagnetischer Strahlung.
Die Brillanz $ B $ ist definiert als die Anzahl $ \Delta N $ der Photonen pro Zeit $ t $, Fläche $ A $, Raumwinkel $ \Delta \Omega $ und innerhalb eines schmalen Wellenlängenbereichs:
Angegeben wird die spektrale Brillanz beispielsweise in der Einheit Schwinger (Sch; nach Julian Seymour Schwinger):[1]
Die Brillanz ist gleich der spektralen Strahldichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L_{\Omega \lambda} geteilt durch die Energie pro Photon (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{E}{\Delta N} ):
Wie die Strahldichte ist die Brillanz bezogen auf ein Einheits-Wellenlängenintervall (oder ein Einheits-Frequenzintervall) als Maß für die spektrale Bandbreite. Dieser Bezug ist notwendig, weil die spektrale Brillanz wie folgt mit der Dispersion (der wellenlängen- und frequenzabhängigen Brechung) zusammenhängt:
Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{\Delta W}{W} die relative spektrale Bandbreite der Strahlung.
Als Maß für die Qualität einer Strahlung ist die Brillanz besonders bei neuartigen Geräten zur Erzeugung von Synchrotronstrahlung relevant, z. B. beim Freie-Elektronen-Laser.
Gemäß dem Satz von Liouville lässt sich die Brillanz einer Quelle – anders als Intensität und Divergenz – nicht durch Optik verändern.
Die Brillanz beschreibt die Auswirkungen der räumlichen (Strahlungsquerschnitt und Raumwinkel) und der zeitlichen Kohärenz (Zeit- und Bandbreitenintervall) einer Strahlquelle. Die entsprechenden minimalen Produkte im Nenner (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A \cdot \Delta \Omega sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t \cdot \tfrac{\Delta \lambda}{\lambda} ) und damit die maximale Brillanz werden nicht durch die Heisenbergsche Unschärferelation vorgegeben, sondern sind eine Manifestation der Wellennatur (die Zeit wird in der klassischen Quantenmechanik nicht als nicht-kommutierender Operator definiert, vgl. Vollständiger Satz kommutierender Observablen). Fläche-Ortsfrequenz- (vgl. z. B. Van-Cittert-Zernike-Theorem) bzw. Zeit-Frequenz-Zusammenhang (vgl. z. B. Wiener-Chintschin-Theorem) – beschreibbar durch Integraltransformationen, z. B. Fouriertransformation.