Das Goldstone-Theorem ist ein Theorem der theoretischen Physik, das in der Festkörperphysik und der Quantenfeldtheorie angewendet wird. Es besagt, dass in Theorien mit spontan gebrochener Symmetrie masselose Teilchen auftreten:
Die Goldstone-Bosonen wurden von Yoichiro Nambu im Rahmen von Untersuchungen der Supraleitung entdeckt.[1] Jeffrey Goldstone arbeitete die Theorie weiter aus[2] und erweiterte sie auf das Gebiet der Quantenfeldtheorie.[3]
Eine Anwendung des Goldstone-Theorems in der Festkörperphysik betrifft den Ferromagnetismus: In ferromagnetischen Materialien sind die Gesetze, die sie beschreiben, invariant unter Drehungen im Raum. Oberhalb der Curie-Temperatur ist die Magnetisierung gleich Null – also ebenfalls invariant unter räumlichen Drehungen. Unterhalb der Curie-Temperatur hat die Magnetisierung jedoch einen konstanten, von Null verschiedenen Wert und zeigt in eine bestimmte Richtung, die Vorzugsrichtung; die Invarianz (Symmetrie) unter räumlichen Drehungen ist also gebrochen. In diesem Fall sind die Goldstone-Bosonen Magnonen: Quasiteilchen, die eine magnetische Spinwelle repräsentieren.
Spontane Symmetriebrechung in der Teilchenphysik ist äquivalent dazu, dass die Lagrangedichte der Theorie invariant unter der Operation einer Symmetriegruppe ist, der Vakuumzustand jedoch nicht. Für jeden gebrochenen Generator der Symmetriegruppe entsteht ein zusätzliches Teilchen in der Theorie. Die Masse des Goldstone-Bosons ist durch die Symmetrie geschützt; es wird durch Quantenkorrekturen kein Masseterm generiert. Alle Goldstone-Bosonen des Standardmodells tragen Spin 0 und Parität −1, sind also pseudoskalare Bosonen.
Ist eine globale Symmetrie gebrochen, so erscheinen die Goldstone-Bosonen als physikalisch beobachtbare Teilchen im Teilchenzoo. Dies ist der Fall bei der näherungsweisen Symmetriebrechung in der Quantenchromodynamik, in der die Pionen die Quasi-Goldstone-Bosonen darstellen.
Ist eine lokale Eichsymmetrie gebrochen, so treten die Goldstone-Bosonen nicht als beobachtbare Teilchen auf. Mit der unitären Eichung kann stets eine Eichung gewählt werden, in der die Goldstone-Bosonen entkoppeln, d. h. inert sind und keiner Wechselwirkung unterliegen. Aufgrund des Higgs-Mechanismus verleiht die spontane Symmetriebrechung den Eichbosonen ihre Masse, und es treten ebenso viele massive Eichbosonen wie Goldstone-Bosonen auf. Daher spricht man auch von den zu den Eichbosonen korrespondierenden Goldstone-Bosonen. Im Rahmen des Goldstone-Boson-Äquivalenztheorems entsprechen die Goldstone-Bosonen den longitudinalen Moden der massiven Eichbosonen; im Fachjargon wird dies so bezeichnet, dass die Eichbosonen die Goldstone-Bosonen „aufessen“.
Im Rahmen der Störungstheorie und deren Visualisierung mithilfe von Feynman-Diagrammen treten die Goldstone-Bosonen als virtuelle Teilchen auf, die propagieren. Die Feynman-Regeln weisen diesen virtuellen Goldstone-Bosonen je nach Eichung eine Masse zu:
Die Goldstone-Fermionen der supersymmetrischen Theorien heißen Goldstinos. Im Fall globaler Symmetrie ist dies ein gewöhnliches Teilchen, bei lokaler Symmetrie verleiht es analog zum Higgs-Mechanismus dem Gravitino seine Masse. Die bosonischen Superpartner der Goldstinos heißen Sgoldstinos.[4][5]
Ein Beispiel für Goldstone-Bosonen in der Quantenchromodynamik (QCD) sind die Pionen: die Masse der beiden leichten u- und d-Quarks sind im Vergleich zur Massenskala der starken Wechselwirkung nahezu 0, sodass die starke Wechselwirkung eine näherungsweise globale
wobei
Das QCD-Vakuum bricht diese Symmetrie spontan, im Teilchenspektrum beobachtet man nur eine
Da u- und d-Quarks jedoch nicht exakt masselos sind (nur dann lassen sich links- und rechtshändige Quarkfelder unabhängig voneinander transformieren), ist die
Allerdings ist ihre Masse sehr klein im Vergleich zur Masse von Proton oder Neutron (
Dieser Effekt tritt in abgeschwächter Form auch bei den Kaonen auf, also bei Mesonen mit einem ebenfalls zu den leichten Quarks gezählten Strange-Quark: Sie sind nur ungefähr halb so schwer wie das Λ-Baryon oder die Σ-Baryonen.