Zustandsgleichung von Mie-Grüneisen

Zustandsgleichung von Mie-Grüneisen

Die Mie-Grüneisen-Zustandsgleichung (engl. auch Mie-Gruneisen equation of state), benannt nach Gustav Mie und Eduard Grüneisen, ist eine Zustandsgleichung der Physik, die für hochverdichtete Materie einen speziellen funktionalen Zusammenhang zwischen der Dichte $ \rho $, dem Druck $ p $ und der absoluten Temperatur $ T $ darstellt. Sie wird u. a. zur Berechnung der Schallgeschwindigkeit und von Stoßwellen bei hohen Umgebungsdrücken sowie zur Modellierung von seismologischen Untersuchungen des Erdinneren verwendet.

Die spezielle Annahme von Mie-Grüneisen bezieht sich auf die Temperaturabhängigkeit, die nur in der Form einer "skalierten Temperatur" $ t $ auftreten darf:

$ t(T,\rho )={\frac {T}{TD(\rho )}}, $

wobei der dichte- oder volumen-abhängige "Temperaturparameter" $ TD(\rho ) $ pauschal das Frequenzspektrum der Gitterschwingungen repräsentiert und üblicherweise mehrere Materialparameter enthält.

Spezielle Form der Gleichung

Eine spezielle Form der Mie-Grüneisen Zustandsgleichung stellt die Messergebnisse von Hochdruckexperimenten auf der Basis von drei Materialparametern im temperaturunabhängigen Teil dar:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p = p_0 \cdot \left( 1 - \Gamma \cdot \eta \right) + \frac{\rho_0 \cdot C^2_0 \cdot \eta}{\left( 1 - s \cdot \eta \right)^2} \cdot \left( 1 - \frac{\Gamma \cdot \eta}{2} \right) + \Gamma \cdot \rho_0 \cdot \left( e - e_0 \right)

mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta = 1 - \frac{\rho_0}{\rho} .

Hierbei bezeichnet

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_0 die Dichte im Normalzustand
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C_0 die Schallgeschwindigkeit im Normalzustand
  • $ \Gamma =\Gamma _{0} $ den dimensionslosen Grüneisenkoeffizienten im Normalzustand
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s den linearen Hugoniot-Steigungskoeffizient (engl. linear Hugoniot slope coefficient), eine dimensionslose Materialkonstante
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e - e_0 die spezifische innere Energie, die im Mie-Grüneisen-Fall nur von der skalierten Temperatur $ t $ (s. o.) abhängen darf.

Beispiele für Parameter der Mie-Grüneisen Zustandsgleichung

Wasser: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_0 = 1000 kg/m3 ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C_0 = 1489 m/s ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s = 1{,}79  ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma = 1{,}65

Stahl: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_0 = 7850 kg/m3 ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C_0 = 4500 m/s ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s = 1{,}49  ; $ \Gamma =2{,}17 $

Kupfer: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_0 = 8930 kg/m3 ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C_0 = 3940 m/s ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s = 1{,}48  ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma = 1{,}96

Zusammenhang der Parameter mit anderen thermodynamischen Zustandsgrößen

Die Schallgeschwindigkeit, mit der sich kleine Druck- und Dichteschwankungen in einem Medium fortpflanzen, ist bei reversibler adiabatischer Zustandsänderung (d. h. bei konstanter Entropie $ S $) gegeben durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c_S=\sqrt{\left. \frac{\partial p}{\partial \rho}\right|_S} = \sqrt{\frac{p}{\rho}\cdot \gamma}

Die Schallgeschwindigkeit ist eine Zustandsgröße.

Der Adiabatenexponent Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma ergibt sich aus:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma = - \frac{V}{p}\cdot \left. \frac{\partial p}{\partial V}\right|_S

Der Grüneisenkoeffizient ist definiert durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma = - \frac{V}{T}\cdot \left. \frac{\partial T}{\partial V} \right|_S = \frac{\beta}{\kappa \cdot \rho \cdot c_V}

wobei die Maxwell-Relation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left. \frac{\partial S}{\partial V} \right|_T = \left. \frac{\partial p}{\partial T} \right|_V und folgende Bezeichnungen verwendet wurden:

Thermische Ausdehnung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \beta = \frac{1}{V}\cdot \left. \frac{\partial V}{\partial T} \right|_p = - \frac{1}{\rho} \cdot \left. \frac{\partial \rho}{\partial T} \right|_p

Isotherme Kompressibilität:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \kappa = - \frac{1}{V} \cdot \left. \frac{\partial V}{\partial p} \right|_T

Isochore spezifische Wärmekapazität:

$ c_{V}={\frac {T}{\rho \cdot V}}\cdot \left.{\frac {\partial S}{\partial T}}\right|_{V} $

Literatur

  • Debye, P.: Zur Theorie der spezifischen Wärmen. In: Annalen der Physik 39, 789–839 (1912)
  • Grüneisen, E.: Theorie des festen Zustandes einatomiger Elemente. In: Annalen der Physik 39, 257–306 (1912)
  • Mie, G.: Grundlagen einer Theorie der Materie. In: Annalen der Physik 2, 1–40 (1912)
  • G.McQueen, S.P.Marsh, J.W.Taylor, J.N.Fritz, W.J.Carter: "High Velocity Impact Phenomena", (1970), S. 230
  • M.A.Zocher et al.: An evaluation of several hardening models using Taylor cylinder impact data. Proc. European Congress on computational Methods in Applied Sciences and Engineering, ECCOMAS, Barcelona, Spain
  • W.B.Holzapfel: Equations of state for solids under strong compression. In: Zeitschrift für Kristallographie. 216 (2000) S. 473–488