Dichroismus: Unterschied zwischen den Versionen

Dichroismus: Unterschied zwischen den Versionen

imported>Ra'ike
(→‎Pleochroismus in der Mineralogie: Etymologie ergänzt aus Pleochroismus (Spezial:Diff/167349109) von Benutzer:Dogbert66 (Umwandlung in WL folgt); Pleochroismus der genannten Minerale nach Quelle/Zielartikel korrigiert)
 
imported>Phzh
K (Leerzeichen nach Bindestrich korrigiert)
 
Zeile 1: Zeile 1:
{{Dieser Artikel|stellt von der Polarisation abhängige Absorption dar. Für Bauteile mit einer von der Wellenlänge abhängenden Reflektivität siehe [[Dichroitischer Spiegel]]}}
{{Dieser Artikel|stellt von der Polarisation abhängige Absorption dar. Für Bauteile mit einer von der Wellenlänge abhängenden Reflektivität siehe [[Dichroitischer Spiegel]]. Für mehrfarbiges Glas, das auf einem anderen Effekt beruht, siehe [[Dichroitisches Glas]].}}
[[Datei:Kupfer(II)-acetat-Monohydrat, dichroitisch.jpg|mini|Kupfer(II)-acetat-Monohydrat, dichroitisch]]
Der '''Dichroismus''' (vom [[Griechische Sprache|griechischen]] Wort ''dichroos'' für „zweifarbig“) ist in der [[Physik]] die Eigenschaft bestimmter Materialien, [[Licht]] in Abhängigkeit von der [[Polarisation]] unterschiedlich stark zu [[Absorption (Physik)|absorbieren]].


Der '''Dichroismus''' (vom [[Griechische Sprache|griechischen]] Wort ''dichroos'' für „zweifarbig“) ist in der [[Physik]] die Eigenschaft von bestimmten Materialien, [[Licht]] in Abhängigkeit von der [[Polarisation]] unterschiedlich stark zu [[Absorption (Physik)|absorbieren]].
Bei dichroitischen Materialien gibt es eine [[Optische Achse (Kristalloptik)|optische Achse]], so dass beim Betrachten durch einen [[Polarisationsfilter]] in der einen Polarisationsrichtung aufgrund der unterschiedlichen Absorption eine andere Farbe zu erkennen ist als in der anderen (ordentlicher und außerordentlicher Strahl). Für dazwischenliegende Polarisationswinkel erhält man [[Mischfarbe]]n, weshalb der Dichroismus insbesondere in der [[Mineralogie]] auch als '''Pleochroismus''' bezeichnet wird ([[Altgriechische Sprache|altgr.]] {{lang|grc|πλέον}} ''pléon'' ‚mehr‘ und {{lang|grc|χρῶμα}} ''chroma'' ‚Farbe‘ bzw. {{lang|grc|χρώσ}} ''chros'' ‚Färbung‘, also „Mehrfarbigkeit“).


Bei dichroitischen Materialien gibt es eine [[Optische Achse (Kristalloptik)|optische Achse]], so dass beim Betrachten durch einen [[Polarisationsfilter]] in der einen Polarisationsrichtung aufgrund der unterschiedlichen Absorption eine andere Farbe zu erkennen ist, als in der anderen (ordentlicher und außerordentlicher Strahl). Für dazwischenliegende Polarisationswinkel erhält man Mischfarben, weshalb der Dichroismus insbesondere in der [[Mineralogie]] auch als '''Pleochroismus''' (aus dem [[Altgriechische Sprache|Griechischen]]: πλέων ''pléōn'' für 'mehr' und χρῶμα ''chroma'' für 'Farbe' bzw. χρώσ ''chros'' die Färbung, also als „Mehrfarbigkeit“) bezeichnet wird. Beim Auftreten von zwei optischen Achsen gibt es drei Hauptbrechachsen, die Absorption ist in drei Polarisationsrichtungen unterschiedlich und man spricht von '''Trichroismus'''.<ref name="bergmann" />
Beim Auftreten von zwei optischen Achsen gibt es drei Hauptbrechachsen, die Absorption ist in drei Polarisationsrichtungen unterschiedlich, und man spricht von '''Trichroismus'''.<ref name="bergmann" />
Die Mehrfarbigkeit äußert sich
* in einer unterschiedlichen [[Farbtiefe (Farbmittel)|Farbtiefe]], Beispiel: der Wechsel von dunkleren Farben zu blasseren Farben bei manchen [[Turmalingruppe|Turmalinen]], oder
* in einem kompletten Farbwechsel, Beispiel: synthetischer [[Alexandrit]], der ohne Polarisationsfilter einen Farbwechsel gelbgrün – violett – rotbraun aufweist.<ref>GIA [[Gemological Institute of America]] Inc Jeniffer Stone-Sundberg: ''[http://www.gia.edu/gems-gemology/spring-2014-synthetic-alexandrite-stone-sundberg Challenges in Orienting Alexandrite: The Usambara and Other Optical Effects in Synthetic HOC-Grown Russian Alexandrite].'' Abgerufen am 10. Juli 2016.</ref>


Die Mehrfarbigkeit äußert sich dabei entweder in einer unterschiedlichen Farbtiefe oder in einem kompletten Farbwechsel. Beispiel für ersteres sind der Wechsel von dunkleren Farben zu blassere Farben bei manchen [[Turmalingruppe|Turmalin]]en. Beispiel für letzteres ist synthetischer [[Alexandrit]], der ohne Polarisationsfilter einen Farbwechsel gelbgrün – violett – rotbraun aufweist.<ref>GIA [[Gemological Institute of America]] Inc Jeniffer Stone-Sundberg, Challenges in Orienting Alexandrite: The Usambara and Other Optical Effects in Synthetic HOC-Grown Russian Alexandrite; http://www.gia.edu/gems-gemology/spring-2014-synthetic-alexandrite-stone-sundberg gelesen 10. Juli 2016</ref>
Der Dichroismus wirkt sich auch auf das [[Reflexion (Physik)|Reflexionsverhalten]] der Materialien aus.


Der Dichroismus  wirkt sich auch auf das [[Reflexion (Physik)|Reflexionsverhalten]] der Materialien aus.
Weiterhin gibt es [[Röntgenspektroskopie|röntgenspektroskopische]] Effekte, die auf der Kopplung von [[Photonen]] im [[Röntgenstrahlung|Röntgenbereich]] an bestimmte [[Elektronenorbital]]e beruhen und unter dem Begriff [[Röntgendichroismus]] zusammengefasst werden.


Weiterhin gibt es noch röntgenspektroskopische Effekte, die auf der Kopplung von [[Photonen]] im [[Röntgenstrahlung|Röntgenbereich]] an bestimmte [[Elektronenorbital]]e beruhen, und die unter dem Begriff [[Röntgendichroismus]] zusammengefasst werden.
Dichroismus ist mit der [[Doppelbrechung]] verwandt, bei welcher der Realteil des komplexen [[Brechungsindex]] von der Polarisation abhängt. Der Imaginärteil ist der [[Absorptionskoeffizient]], und dessen Abhängigkeit von der Polarisation bewirkt gerade den Dichroismus.


Dichroismus ist mit der [[Doppelbrechung]] verwandt, bei der der Realteil des [[Brechungsindex]] von der Polarisation abhängt. Im komplexen Brechungsindex ist der Imaginärteil gerade der [[Absorptionskoeffizient]], und dessen Abhängigkeit von der Polarisation bewirkt gerade den Dichroismus. Ein anderer verwandter Effekt ist der [[Alexandrit-Effekt]], bei dem die Absorption nicht von der Polarisation, sondern von der Wellenlänge des Lichts abhängt.
Ein anderer verwandter Effekt ist der [[Alexandrit-Effekt]], bei dem die Absorption nicht von der Polarisation, sondern von der [[Wellenlänge]] des Lichts abhängt.


== Beschreibung ==
== Beschreibung ==
Einige Materialien (hauptsächlich [[Kristall]]e) haben eine oder mehrere ausgezeichnete [[Optische Achse (Kristalloptik)|optische Achsen]].
Einige Materialien (hauptsächlich [[Kristall]]e) haben eine oder mehrere ausgezeichnete optische Achsen.
Bei optisch einachsigen Materialien wird einfallendes Licht in Abhängigkeit seiner Polarisation (immer bezogen auf den Vektor der elektrischen Feldstärke) in zwei Teilstrahlen aufgespalten: [[Doppelbrechung#Ordentlicher und außerordentlicher Strahl|den ordentlichen und den außerordentlichen Strahl]]. Zeigt das Material unterschiedliches Absorptionsverhalten bezüglich dieser Achsen, das heißt wird der ordentliche stärker bzw. schwächer absorbiert als der außerordentliche Strahl, spricht man von einem dichroitischen Kristall. Bei einem entsprechend dicken Kristall wird daher einer der beiden Teilstrahlen (bis unter eine Schwellwert) absorbiert und nur der andere [[Transmission (Physik)|transmittiert]].
Der Effekt ist aber stark wellenlängenspezifisch und tritt nur in einem schmalen Spektralbereich auf, das heißt, bei einer anderen Wellenlänge des Lichts kann der Effekt der Absorption nicht auftreten (man spricht dann von [[Doppelbrechung]]) oder sich sogar umkehren.
In der Regel sind dichroitische Kristalle doppelbrechend und doppelbrechende Körper dichroitisch. Ausnahmen bestehen beim Vorliegen ganz bestimmter Randbedingungen (z.&nbsp;B. Einschränkungen des Spektralbereichs).<ref name="Daniel">{{Literatur|Autor=Herbert Daniel|Titel=Physik: Optik, Thermodynamik, Quanten|Verlag=Walter de Gruyter|ISBN=978-3-11-014630-1|Jahr=1998|Seiten=192}}</ref>
Betrachtet man „normales“, d.&nbsp;h. unpolarisiertes, [[Weißlicht]] des gesamten sichtbaren Spektrums, so führt die polarisationsabhängige Absorption von dichroitischen Materialien zu Schwächung bestimmter Spektralbereiche. Diese Änderung ist dann als Änderung der Lichtfarbe wahrnehmbar.
Besonders deutlich wird der Dichroismus, wenn man linear polarisiertes Licht auf einen optisch einachsigen Kristall mit den zwei Resonanz- bzw. Eigenfrequenzen (Extremfarben) im sichtbaren Spektralbereich einstrahlt und das durchfallende Licht betrachtet. Ändert man nun die Polarisationsrichtung, so werden die Extremfarben sichtbar, wenn die Polarisation senkrecht bzw. parallel zur optischen Achse des Kristalls liegt. Für eine Polarisation dazwischen treten Mischfarben aus diesen beiden Farben auf, weswegen in der Mineralogie häufig allgemein von ''Pleochroismus'' gesprochen wird. Hinsichtlich der tatsächlichen Beobachtung ist diese Begriffswahl gerechtfertigt.<ref name="bergmann">{{Literatur|Autor=Ludwig Bergmann, Heinz Niedrig, Clemens Schaefer|Titel=Optik: Wellen- Und Teilchenoptik|Verlag=Walter de Gruyter|ISBN=978-3-11-017081-8|Jahr=2004|Monat=August|Tag=24|Seiten=558}}</ref>


Ein komplexeres Absorptionsverhalten liegt bei optisch mehrachsigen Kristallen vor, wobei ein [[Einkristall]] höchstens zwei optische Achsen haben kann und mehr nur durch aneinanderkitten von vielen Einkristallen zustande kommen können ([[polykristall]]ines Material). Optisch zweiachsige Kristalle erzeugen zwei außerordentliche Strahlen, sie zeigen den ''Trichroismus''. Analog zeigen mehrachsige Polykristalle den Pleochroismus mit vielen Farben.
Bei optisch einachsigen Materialien wird einfallendes Licht in Abhängigkeit seiner Polarisation (immer bezogen auf den Vektor der elektrischen Feldstärke) in zwei Teilstrahlen aufgespalten: [[Doppelbrechung#Ordentlicher und außerordentlicher Strahl|den ordentlichen und den außerordentlichen Strahl]]. Zeigt das Material unterschiedliches Absorptionsverhalten bezüglich dieser Achse, d.&nbsp;h., wird der ordentliche Strahl stärker bzw. schwächer absorbiert als der außerordentliche, so spricht man von einem dichroitischen Kristall. Bei einem entsprechend dicken Kristall wird daher einer der beiden Teilstrahlen (bis unter eine Schwellwert) absorbiert und nur der andere [[Transmission (Physik)|transmittiert]].


== Grad des Dichroismus ==
Der Effekt ist stark wellenlängenspezifisch und tritt nur in einem schmalen Spektralbereich auf, d.&nbsp;h., bei einer anderen Wellenlänge des Lichts kann der Effekt der Absorption nicht auftreten (man spricht dann von [[Doppelbrechung]]) oder sich sogar umkehren.
Der Grad des Dichroismus <math>D</math> wird bestimmt durch das Verhältnis der Differenz der [[Absorptionskoeffizient]]en  für die parallele bzw. senkrechte Polarisation (<math>K_{\parallel}</math> bzw. <math>K_{\perp}</math>) zu ihrer Summe.<ref name="Ardenne" />
In der Regel sind dichroitische Kristalle doppelbrechend und doppelbrechende dichroitisch; Ausnahmen bestehen beim Vorliegen ganz bestimmter Randbedingungen (z.&nbsp;B. Einschränkungen des Spektralbereichs).<ref name="Daniel">{{Literatur |Autor=Herbert Daniel |Titel=Physik: Optik, Thermodynamik, Quanten |Verlag=Walter de Gruyter |Datum=1998 |ISBN=3-11-014630-4 |Seiten=192}}</ref>
Betrachtet man „normales“, d.&nbsp;h. unpolarisiertes, [[Weißlicht]] des gesamten sichtbaren Spektrums, so führt die polarisationsabhängige Absorption dichroitischer Materialien zur Schwächung bestimmter Spektralbereiche, was als Änderung der [[Lichtfarbe]] wahrnehmbar ist.


:<math>D = \frac{K_{\parallel}-K_{\perp}}{K_{\parallel}+K_{\perp}}</math>
Besonders deutlich wird der Dichroismus, wenn man linear polarisiertes Licht auf einen optisch einachsigen Kristall mit zwei Resonanz- bzw. Eigenfrequenzen (Extremfarben) im sichtbaren Spektralbereich einstrahlt und das durchfallende Licht betrachtet. Ändert man nun die Polarisationsrichtung, so werden die Extremfarben sichtbar, wenn die Polarisation senkrecht bzw. parallel zur optischen Achse des Kristalls liegt. Für eine Polarisation dazwischen treten Mischfarben aus diesen beiden Farben auf, weswegen in der Mineralogie häufig allgemein von ''Pleochroismus'' gesprochen wird. Hinsichtlich der tatsächlichen Beobachtung ist diese Begriffswahl gerechtfertigt.<ref name="bergmann">{{Literatur |Autor=Ludwig Bergmann, Heinz Niedrig, Clemens Schaefer |Titel=Optik: Wellen- und Teilchenoptik |Verlag=Walter de Gruyter |Datum=2004 |ISBN=3-11-017081-7 |Seiten=558}}</ref>


== Linearer und zirkularer Dichroismus ==
Komplexeres Absorptionsverhalten liegt bei optisch mehrachsigen Kristallen vor:
Beim Dichroismus wird hinsichtlich der Art der Polarisation des einfallenden Lichts unterschieden.
* optisch zweiachsige Kristalle erzeugen zwei außerordentliche Strahlen, sie zeigen den ''Trichroismus''; ein [[Einkristall]] kann höchstens zwei optische Achsen haben.
* analog dazu zeigen (Poly)Kristalle mit mehr als zwei optischen Achsen den ''Pleochroismus'' mit vielen Farben; solche Kristalle können nur durch Aneinanderkitten vieler Einkristalle zustande kommen ([[polykristall]]ines Material).


Es gibt den ''linearen Dichroismus'', der das Phänomen bezeichnet, dass bei linear polarisiertem Licht in Abhängigkeit von der Wellenlänge entweder der außerordentliche Strahl stärker absorbiert wird als der ordentliche, oder umgekehrt. Dieser Effekt wurde Anfang des 19. Jh. erstmals bei [[Einkristall]]en des [[Schmuckstein]]s [[Turmalin]] gefunden.<ref name="Ardenne" />
== Grad des Dichroismus ==
Der Grad des Dichroismus <math>D</math> wird bestimmt durch das Verhältnis der Differenz der [[Absorptionskoeffizient]]en für die parallele bzw. senkrechte Polarisation (<math>K_{\parallel}</math> bzw. <math>K_{\perp}</math>) zu ihrer Summe:<ref name="Ardenne" />


Weiterhin gibt es analog zur [[Zirkulare Doppelbrechung|zirkularen Doppelbrechung]] auch den Effekt des zirkularen Dichroismus (auch [[Zirkulardichroismus]] genannt), der das unterschiedliche Absorptionsverhalten rechts- und linksdrehend polarisierter Strahlung in einem [[Optische Aktivität|optisch aktivem]] Material beschreibt. Dieser Effekt wurde erstmals 1896 durch [[Aimé Auguste Cotton]] (1869–1951) beschrieben, vgl. [[Cotton-Effekt]].<ref name="Ardenne" />
:<math>D = \frac{K_{\parallel} - K_{\perp}}{K_{\parallel} + K_{\perp}}</math>


== Linearer und zirkularer magnetischer Dichroismus ==
== Linearer und zirkularer Dichroismus ==
Analog zu [[Magnetooptik|magnetooptischen Effekten]] der [[Doppelbrechung]] kann auch der Dichroismus bestimmter Materialien – also die Änderung der Intensität oder der Polarisationszustand des Lichts beim Durchgang durch das Material – durch magnetische Felder beeinflusst werden (magnetisch induzierter Dichroismus). Hierbei wird zwischen dem ''linearen magnetischen Dichroismus'' (selten auch ''magnetischer Lineardichroismus'', engl. {{lang|en|magnetic linear dichroism}}, MLD). und dem ''zirkularen magnetischen Dichroismus'' unterschieden.<ref>{{Literatur|Autor=W. Roy Mason|Titel=Magnetic Linear Dichroism Spectroscopy|Sammelwerk=A practical guide to magnetic circular dichroism spectroscopy|Verlag=Wiley-Interscience|ISBN=978-0-470-06978-3|Jahr=2007|Seiten=188 ff|Online = {{Google Buch|BuchID=rmXTpvbmsCIC|Seite=188}}}}</ref>
[[Datei:Circular dichroism.png|mini|Zirkulardichroismus: rechts- und linkszirkular polarisiertes Licht wird in einer Schicht, die ein [[Enantiomer]] eines optisch aktiven chiralen Stoffes enthält, verschieden beeinflusst.]]
 
Beim Dichroismus wird hinsichtlich der Art der Polarisation des einfallenden Lichts unterschieden:
Der ''magnetische zirkulare Dichroismus'' (auch ''magnetische Zirkulardichroismus'' oder ''zirkularer magnetischer Dichroismus'' genannt, engl. {{lang|en|magnetic circular dichroism}}, MCD) tritt bei magnetischen oder magnetisierten Materialien als eine Folge der unterschiedlichen [[Spin]]besetzung gewisser [[Atomorbital|Orbitale]] auf. 
* ''linearer Dichroismus'' bezeichnet das Phänomen, dass bei linear polarisiertem Licht in Abhängigkeit von der Wellenlänge entweder der außerordentliche Strahl stärker absorbiert wird als der ordentliche, oder umgekehrt. Dieser Effekt wurde Anfang des 19.&nbsp;Jh. erstmals bei [[Einkristall]]en des [[Schmuckstein]]s [[Turmalin]] gefunden.<ref name="Ardenne" />
 
* analog zur [[Zirkulare Doppelbrechung|zirkularen Doppelbrechung]] gibt es auch den Effekt des zirkularen Dichroismus (auch [[Zirkulardichroismus]] genannt), der das unterschiedliche Absorptionsverhalten rechts- und linksdrehend polarisierter Strahlung in einem [[Optische Aktivität|optisch aktivem]] Material beschreibt. Dieser Effekt wurde erstmals 1896 von [[Aimé Auguste Cotton]] beschrieben, vgl. [[Cotton-Effekt]].<ref name="Ardenne" />
Das Phänomen tritt bei Magnetisierung parallel zur [[Ausbreitungsrichtung]] des zirkular polarisierten Lichtes auf. Man unterscheidet zwischen einer polaren und einer longitudinalen Geometrie. Bei der polaren Geometrie liegt die Magnetisierung senkrecht zur Oberfläche, bei der longitudinalen liegt die Magnetisierung parallel zur Oberfläche in der Einfallsebene. Hier wird die unterschiedliche Absorption für die beiden Polarisationsrichtungen ausgenutzt. Diese ist proportional zum Imaginärteil des [[Brechungsindex]]. Der gemessene Effekt entspricht somit:
:<math>\mathrm{Im}(n_{+} - n_{-})=\mathrm{Im}\left(\sqrt{\varepsilon_{xx} + \mathrm{i}\,\varepsilon_{xy}} - \sqrt{\varepsilon_{xx} - \mathrm{i}\,\varepsilon_{xy}}\right) \approx \mathrm{Re}\left(\frac{\varepsilon_{xy}}{\sqrt{\varepsilon_{xx}}}\right)</math>
 
Beide Formen des magnetischen Dichroismus treten sowohl im sichtbaren Spektrum als auch im Röntgenbereich auf ([[Röntgendichroismus]]). Oft findet man daher auch Bezeichnungen speziell für den Röntgendichroismus: {{lang|en|''X-ray magnetic circular dichroism''}} (XMCD, dt. ‚zirkularer, magnetischer Röntgendichroismus‘; auch {{lang|en|''magnetic x-ray circular dichroism''}}, MXCD, genannt) und den weniger starken {{lang|en|X-ray magnetic linear dichroism}} (XMLD, dt. ‚linearer, magnetischer Röntgendichroismus‘). Besonders interessant ist MCD im weichen [[Röntgen]]bereich (engl. {{lang|en|(soft) X-ray magnetic circular dichroism}}, (S)[[X-MCD]]), wo die unbesetzte [[Valenzband]]-[[Bandstruktur|Elektronenstruktur]] spinaufgelöst gemessen werden kann.


== Anwendung und Materialien ==
== Anwendung und Materialien ==
Angewendet werden dichroitische Materialien z.&nbsp;B. als dichroitischer [[Polarisator]] im sichtbaren Bereich des [[Elektromagnetisches Spektrum|elektromagnetischen Spektrums]]. Hier können einfache [[Drahtgitterpolarisator]]en nicht mehr eingesetzt werden, denn mit geringer werdender Wellenlänge wird auch der erforderliche Gitterabstand geringer. Dieser ist schon im Bereich des [[Nahes Infrarot|nahen Infrarot]] nur noch schwer zu realisieren, im sichtbaren Bereich sind Strukturen in der Größenordnung von [[Molekül]]en notwendig.


Anwendung finden dichroitische Materialien beispielsweise als dichroitischer [[Polarisator]] im sichtbaren Bereich des elektromagnetischen Spektrums. Hier können einfache [[Drahtgitterpolarisator]]en nicht mehr eingesetzt werden, denn mit geringer werdender Wellenlänge wird auch der erforderliche Gitterabstand geringer, welcher schon im Bereich des nahen Infrarot nur noch schwer zu realisieren ist. Im sichtbaren Bereich sind Strukturen in der Größenordnung von Molekülen notwendig.
Dem US-amerikanischen Physiker [[Edwin Herbert Land]] gelang 1932 erstmals die Herstellung dichroitischer Folien. Dazu richtete er die länglichen [[Kohlenwasserstoff]]moleküle in [[Polyvinylalkohol]] durch Erhitzung und [[Dehnung]] des Materials entsprechend aus. Solche [[Polarisationsfolie]]n ([[Polaroid]]<nowiki />filter oder -folie genannt) werden sehr häufig eingesetzt und sind vergleichsweise günstig.<ref>{{Literatur |Autor=Rainer Dohlus |Titel=Photonik |Verlag=Oldenbourg Wissenschaftsverlag |Datum=2010 |ISBN=978-3-486-58880-4}}</ref>
Dem US-amerikanischen Physiker [[Edwin Herbert Land]] (1909–1991) gelang 1932 erstmals die Herstellung von dichroitischen Folien. Dazu richtete er die länglichen Kohlenwasserstoffmoleküle in [[Polyvinylalkohol]] durch Erhitzung und Dehnung des Materials entsprechend aus. Solche [[Polarisationsfolie]]n ([[Polaroid]]filter oder Polaroidfolie genannt) werden sehr häufig eingesetzt und sind vergleichsweise günstig.<ref>{{Literatur|Autor=Rainer Dohlus|Titel=Photonik|Verlag=Oldenbourg Wissenschaftsverlag|ISBN=978-3-486-58880-4|Seiten=}}</ref>
Sie können vergleichsweise großflächig hergestellt werden und erreichen einen [[Polarisationsgrad]] von über&nbsp;99 %.<ref name="Ardenne">{{Literatur |Autor=Manfred von Ardenne |Titel=Effekte der Physik und ihre Anwendungen |Verlag=Harri Deutsch Verlag |Datum=2005 |ISBN=3-8171-1682-9 |Seiten=777–778}}</ref>
Sie können vergleichsweise großflächig hergestellt werden und erreichen einen Polarisationsgrad von mehr als 99 %.<ref name="Ardenne">{{Literatur|Autor=Manfred von Ardenne|Titel=Effekte der Physik und ihre Anwendungen|Verlag=Harri Deutsch Verlag|ISBN=978-3-8171-1682-9|Jahr=2005|Monat=September|Tag=1|Seiten=777–778}}</ref>
Ihre Qualität (z.&nbsp;B. hinsichtlich des erreichbaren [[Transmission (Physik)|Transmissions-]] oder [[Polarisationsgrad]]es) liegt jedoch unter der von anderen Polarisatoren. Des Weiteren zeigen sie Nachteile beim Anwendungen mit hohen [[Lichtleistung]]en. Die Polarisation aufgrund von Absorption im Material führt zu einer Erwärmung und kann negative Einflüsse auf die Eigenschaften des Polarisators haben, ihn im Extremfall sogar zerstören.
Ihre Qualität (z.&nbsp;B. hinsichtlich des erreichbaren [[Polarisationsgrad|Polarisations-]] oder [[Transmission (Physik)|Transmissionsgrades]]) liegt jedoch unter der von anderen Polarisatoren. Des Weiteren zeigen sie Nachteile beim Anwendungen mit hohen Lichtleistungen. Wie beschrieben wird die Polarisation durch Absorption im Material erreicht, dies führt zu einer Erwärmung und kann negative Einflüsse auf die Eigenschaften des Polarisators haben, oder ihn im Extremfall sogar zerstören.


Es gibt aber auch Körper aus mehreren Materialien, die dichroitisches Verhalten zeigen. So können Nadeln aus schwefelsaurem Jodchinin ([[Herapathit]]) in Zellulose eingebettet und als dichroitischer Polarisator (Polarisationsfolie) genutzt werden.<ref name="Daniel" /> In gleicher Weise kommen auch dichroitischen Farbstoffe in Kunststofffolien zum Einsatz. Die dazu notwendige einheitliche Ausrichtung der Farbstoffmoleküle wird beispielsweise durch elektrische oder magnetische Felder erreicht.<ref name="HeringMartinStrohrer" />
Es gibt aber auch Körper aus mehreren Materialien, die dichroitisches Verhalten zeigen. So können Nadeln aus schwefelsaurem Jodchinin ([[Herapathit]]) in [[Zellulose]] eingebettet und als dichroitischer Polarisator (Polarisationsfolie) genutzt werden.<ref name="Daniel" /> In gleicher Weise kommen auch dichroitischen Farbstoffe in [[Kunststofffolie]]n zum Einsatz. Die dazu notwendige einheitliche Ausrichtung der Farbstoffmoleküle wird beispielsweise durch magnetische oder [[Elektrisches Feld|elektrische Felder]] erreicht.<ref name="HeringMartinStrohrer" />


In der [[Mineralogie]] findet der Dichroismus Verwendung bei der Charakterisierung von [[Mineral]]ien (und wird dabei meist ''Pleochroismus'' genannt). Dazu wird unter anderem ein sogenanntes [[Dichroskop]] eingesetzt. Ein typisches dichroitisches Material sind [[Turmalin]]e, beispielsweise der grüne Turmalin ([[Verdelith]]). So wird bei der Transmission von natürlichem Licht durch eine ca. 1&nbsp;mm dicke Platte aus Verdelith der ordentliche Strahl praktisch vollständig absorbiert, der außerordentliche Strahl wird hingegen nur geschwächt.<ref name="HeringMartinStrohrer">{{Literatur|Autor=Ekbert Hering, Rolf Martin, Martin Stohrer|Titel=Physik für Ingenieure|Verlag=Springer|ISBN=978-3-540-71855-0|Jahr=2008|Seiten=584}}</ref>
In der [[Analytische Chemie|Analytischen Chemie]] kann der Zirkulardichroismus zur [[Strukturanalyse]] optisch aktiver [[Chiralität (Chemie)|chiraler]] Moleküle eingesetzt werden.


In der [[Analytische Chemie|Analytischen Chemie]] kann der Dichroismus zur Strukturanalyse von optisch aktiven [[Chiralität (Chemie)|chiralen]] Molekülen eingesetzt werden (siehe auch [[Circulardichroismus]]).
Zur Verwendung in der Mineralogie siehe folgendes Kapitel.


== Pleochroismus in der Mineralogie ==
== Pleochroismus in der Mineralogie ==
In der Mineralogie wird der Dichroismus bei der Charakterisierung von [[Mineral]]ien verwendet und dabei meist ''Pleochroismus'' genannt. Die pleochroitischen Eigenschaften eines Minerals können mit Hilfe eines [[Dichroskop]]s festgestellt und zur Bestimmung und Prüfung vor allem bei [[Schmuckstein]]en genutzt werden. Seine Wirkung auf die Farbtiefe ist vor allem für [[Edelsteinschleifer]] von Bedeutung bei der Auswahl des [[Schliff (Schmuckstein)|Schliffs]], um zu dunkle oder helle (blasse) Farben zu vermeiden.


Pleochroismus (aus dem Griechischen: πλέων pléōn für 'mehr' und χρῶμα chroma für 'Farbe' bzw. χρώσ chros die 'Färbung') bezeichnet in der [[Mineralogie]] die Mehrfarbigkeit von Kristallen. Er tritt bei durchsichtigen, farbigen Steinen ebenso auf wie bei undurchsichtigen. Die Ursache ist die ungleiche [[Absorption (Physik)|Absorption]] des [[Licht]]es abhängig von der [[Polarisation]]srichtung.  
Pleochroismus tritt bei durchsichtigen, farbigen Steinen ebenso auf wie bei undurchsichtigen. So wird bei der Transmission von natürlichem Licht durch eine ca. 1&nbsp;mm dicke Platte aus grünem Turmalin ([[Turmalin #Varietäten|Verdelith]]) der ordentliche Strahl praktisch vollständig absorbiert, der außerordentliche Strahl hingegen nur geschwächt.<ref name="HeringMartinStrohrer">{{Literatur |Autor=Ekbert Hering, Rolf Martin, Martin Stohrer |Titel=Physik für Ingenieure |Verlag=Springer |Datum=2008 |ISBN=978-3-540-71855-0 |Seiten=584}}</ref>


Der Dichroismus ist eine Sonderform des Pleochroismus mit zwei verschiedenen Hauptfärbungen und tritt in [[Optische Achse (Kristalloptik) |uniaxialen]] Kristallen auf. Der Trichroismus zeigt drei Hauptfärbungen und tritt in [[Optische Achse (Kristalloptik) |biaxialen]] Kristallen auf. Mineralien des [[Kubisches Kristallsystem|kubischen Kristallsystems]] oder amorphe Stoffe zeigen kein Pleochroismus.
Sonderformen des Pleochroismus sind:
* der Dichroismus zeigt zwei verschiedene Hauptfärbungen und tritt in uniaxialen Kristallen auf, d.&nbsp;h. in Kristallen mit einer [[Optische Achse (Kristalloptik)|optischen Achse]].
* der Trichroismus zeigt drei verschiedene Hauptfärbungen und tritt in biaxialen Kristallen auf, d.&nbsp;h. in Kristallen mit zwei optischen Achsen.
''Keinen'' Pleochroismus zeigen [[Mineralien]] des [[Kubisches Kristallsystem|kubischen Kristallsystems]] und [[amorph]]e Stoffe.


Die pleochroitischen Eigenschaften eines Minerals können mit Hilfe eines [[Dichroskop]]s festgestellt und zur Bestimmung und Prüfung vor allem bei [[Schmuckstein]]en genutzt werden. Seine Wirkung auf die Farbtiefe ist vor allem für Edelsteinschleifer von Bedeutung bei der Auswahl des [[Schliff (Schmuckstein)|Schliffs]], um zu dunkle oder helle (blasse) Farben zu vermeiden.
Je nachdem, wie sich ordentlicher und außerordentlicher Strahl farblich unterscheiden, kann man dem Objekt bestimmte Eigenschaften hinsichtlich seiner [[Kristallstruktur]] zuweisen; dabei kann es vorkommen, dass bei bestimmten Kristallen bis zu drei verschiedene Farben sichtbar werden, wenn man ihn während der Prüfung dreht:
 
{| class="wikitable"
! colspan="2" style="text-align:center"|Farben
!optische Eigenschaft
!Kristallstruktur
|-
|colspan="4"|eine Farbe
|-
|bgcolor="#606060"|
|bgcolor="#606060"|
|[[Isotropie|Isotrop]]
|[[Amorphes Material|amorph]] ([[Glas]]), [[Korngröße#Absolute Korngröße|mikrokristallin]], [[Kubisches Kristallsystem|Kubisch]]
|-
|colspan="4"|zwei Farben
|-
|bgcolor="#606060"|
|bgcolor="#D3D3D3"|
|[[Anisotropie|Anisotrop]], [[Doppelbrechung|doppelbrechend]], [[Kristalloptik|optisch einachsig]]
|[[Rhomboedrisches Kristallsystem|Trigonal]], [[Tetragonales Kristallsystem|Tetragonal]], [[Hexagonales Kristallsystem|Hexagonal]]
|-
|colspan="4"|drei Farben bei zwei verschiedenen Richtungen
|-
|bgcolor="#D3D3D3"|
|bgcolor="#606060"|
|rowspan="2"|Anisotrop, doppelbrechend, [[Kristalloptik|optisch zweiachsig]]
|rowspan="2"|[[Triklines Kristallsystem|Triklin]], [[Monoklines Kristallsystem|Monoklin]], [[Orthorhombisches Kristallsystem|Rhombisch]]
|-
|bgcolor="#909090"|
|bgcolor="#D3D3D3"|
|}


Theoretische Grundlagen und Begründungen dafür, ob ein solcher Effekt auftreten kann, werden in einem Teilbereich der theoretischen [[Kristallographie]] abgehandelt.
Theoretische Grundlagen und Begründungen dafür, ob ein solcher Effekt auftreten kann, werden in einem Teilbereich der theoretischen [[Kristallographie]] abgehandelt.


[[Alexandrit]], [[Hiddenit]], [[Kunzit]], [[Rubin]], [[Saphir]] und [[Turmalingruppe|Turmalin]] lassen schon mit bloßem Auge die Mehrfarbigkeit erkennen. Weitere Beispiele:
[[Alexandrit]], [[Hiddenit]], [[Kunzit]], [[Rubin]], [[Saphir]] und [[Turmalingruppe|Turmalin]] lassen schon mit bloßem Auge die Mehrfarbigkeit erkennen.
* [[Andalusit]] – gelb, olivgrün, rotbraun bis dunkelrot<ref>{{Literatur| Autor= Walter Schumann| Titel= Edelsteine und Schmucksteine. Alle Arten und Varietäten. 1900 Einzelstücke| Auflage= 16. überarbeitete | Verlag= BLV Verlag | Ort= München | Datum= 2014 | Seiten= 194 | ISBN= 978-3-8354-1171-5}}</ref>
 
Weitere Beispiele:
* [[Andalusit]] – gelb, olivgrün, rotbraun bis dunkelrot<ref>{{Literatur |Autor=Walter Schumann |Titel=Edelsteine und Schmucksteine. Alle Arten und Varietäten. 1900 Einzelstücke |Auflage=16. überarbeitete |Verlag=BLV Verlag |Ort=München |Datum=2014 |ISBN=978-3-8354-1171-5 |Seiten=194}}</ref>
* [[Benitoit]] – farblos, purpur bis indigoblau oder grünlichblau
* [[Benitoit]] – farblos, purpur bis indigoblau oder grünlichblau
* [[Cordierit]] – hellgelb bis grün, violett bis blauviolett, hellblau
* [[Cordierit]] – hellgelb bis grün, violett bis blauviolett, hellblau
* [[Malachit]] – fast farblos, gelblichgrün, tiefgrün
* [[Malachit]] – fast farblos, gelblichgrün, tiefgrün
* [[Tansanit]] – purpur, blau und braun oder gelb<ref>Siehe [http://minerals.gps.caltech.edu/FILES/Visible/zoisite/Zoisite2891_colors.jpg diese Webseite] des California Institute of Technology, Pasadena, California, USA für ein anschauliches Bild.</ref>
* [[Tansanit]] – purpur, blau und braun oder gelb<ref>Siehe [http://minerals.gps.caltech.edu/FILES/Visible/zoisite/Zoisite2891_colors.jpg diese Webseite] des California Institute of Technology, Pasadena, California, USA für ein anschauliches Bild.</ref>
== Magnetischer Dichroismus ==
Analog zu [[Magnetooptik|magnetooptischen Effekten]] der [[Doppelbrechung]] kann auch der Dichroismus bestimmter Materialien – also die Änderung der Intensität oder der Polarisationszustand des Lichts beim Durchgang durch das Material – durch [[Magnetisches Feld|magnetische Felder]] beeinflusst werden (''magnetisch induzierter Dichroismus''). Hierbei werden unterschieden:<ref>{{Literatur |Autor=W. Roy Mason |Titel=Magnetic Linear Dichroism Spectroscopy |Sammelwerk=A practical guide to magnetic circular dichroism spectroscopy |Verlag=Wiley-Interscience |Datum=2007 |ISBN=978-0-470-06978-3 |Seiten=188 ff |Online={{Google Buch|BuchID=rmXTpvbmsCIC|Seite=188}}}}</ref>
* der lineare magnetische Dichroismus (selten auch magnetischer Lineardichroismus genannt, engl. {{lang|en|''magnetic linear dichroism''}},&nbsp;MLD)
* der zirkulare magnetische Dichroismus (auch magnetischer zirkularer Dichroismus oder magnetischer Zirkulardichroismus genannt, engl. {{lang|en|''magnetic circular dichroism''}},&nbsp;MCD).
Der zirkulare magnetische Dichroismus tritt als Folge der unterschiedlichen [[Spin]]<nowiki />besetzung gewisser [[Atomorbital|Orbitale]] bei magnetischen oder magnetisierten Materialien auf, bei denen die Magnetisierung parallel zur [[Ausbreitungsrichtung]] des zirkular polarisierten Lichtes ausgerichtet ist. Dabei unterscheidet man:
* eine polare Geometrie, bei welcher die Magnetisierung senkrecht zur Oberfläche liegt
* eine longitudinale Geometrie, bei welcher die Magnetisierung parallel zur Oberfläche in der Einfallsebene liegt.
Hier wird die unterschiedliche Absorption für die beiden Polarisationsrichtungen ausgenutzt, die proportional zum Imaginärteil des Brechungsindex ist. Der gemessene Effekt entspricht somit:
:<math>\begin{align}
\mathrm{Im}(n_{+} - n_{-}) &= \mathrm{Im}\left(\sqrt{\varepsilon_{xx} + \mathrm{i}\,\varepsilon_{xy}} - \sqrt{\varepsilon_{xx} - \mathrm{i}\,\varepsilon_{xy}}\right)\\
                          &\approx \mathrm{Re}\left(\frac{\varepsilon_{xy}}{\sqrt{\varepsilon_{xx}}}\right)
\end{align}</math>
Beide Formen des magnetischen Dichroismus treten auch im Röntgenbereich auf (magnetischer [[Röntgendichroismus]]):
* der lineare magnetische Röntgendichroismus (engl. {{lang|en|''X-ray magnetic linear dichroism''}},&nbsp;XMLD)
* der stärkere zirkulare magnetische Röntgendichroismus (engl. {{lang|en|''X-ray magnetic circular dichroism''}},&nbsp;XMCD; auch {{lang|en|''magnetic x-ray circular dichroism''}},&nbsp;MXCD).
Besonders interessant ist MCD im weichen Röntgenbereich (engl. {{lang|en|''(soft) X-ray magnetic circular dichroism''}}, (S)X-MCD), wo die unbesetzte [[Valenzband]]-[[Bandstruktur|Elektronenstruktur]] spinaufgelöst gemessen werden kann.


== Literatur ==
== Literatur ==
* {{Literatur|Autor=Herbert Daniel|Titel=Physik: Optik, Thermodynamik, Quanten|Verlag=Walter de Gruyter|ISBN=978-3-11-014630-1|Jahr=1998|Seiten=192}}
* {{Literatur
* {{Literatur|Autor=Ludwig Bergmann, Heinz Niedrig, Clemens Schaefer|Titel=Optik: Wellen- Und Teilchenoptik|Verlag=Walter de Gruyter|ISBN=978-3-11-017081-8|Jahr=2004|Monat=August|Tag=24|Seiten=557–559}}
  |Autor=Herbert Daniel
* {{Literatur | Autor= Walter Schumann| Titel= Edelsteine und Schmucksteine. Alle Arten und Varietäten der Welt. 1600 Einzelstücke| Auflage= 13. überarbeitete und erweiterte | Verlag= BLV Verlags GmbH | Ort= München u. a. | Jahr= 2002 | Seiten= | ISBN= 3-405-16332-3}}
  |Titel=Physik: Optik, Thermodynamik, Quanten
  |Verlag=Walter de Gruyter
  |Datum=1998
  |ISBN=3-11-014630-4
  |Seiten=192}}
* {{Literatur
  |Autor=Ludwig Bergmann, [[Heinz Niedrig]], Clemens Schaefer
  |Titel=Optik: Wellen- und Teilchenoptik
  |Verlag=Walter de Gruyter
  |Datum=2004
  |ISBN=3-11-017081-7
  |Seiten=557–559}}
* {{Literatur
  |Autor=Walter Schumann
  |Titel=Edelsteine und Schmucksteine. Alle Arten und Varietäten der Welt. 1600 Einzelstücke
  |Auflage=13. überarbeitete und erweiterte
  |Verlag=BLV Verlags GmbH
  |Ort=München u.&nbsp;a.
  |Datum=2002
  |ISBN=3-405-16332-3}}


== Weblinks ==
== Weblinks ==
{{Commonscat|Dichroism|Dichroismus}}
* [[Mineralienatlas:Dichroismus]] (Wiki)
* [[Mineralienatlas:Dichroismus]] (Wiki)
* [http://www.beyars.com/lexikon/lexikon_3486.html Prof. Leopold Rösslers Schmucklexikon - Pleochroismus]
* [http://www.beyars.com/lexikon/lexikon_3486.html Prof. Leopold Rösslers Schmucklexikon Pleochroismus]


== Einzelnachweise ==
== Einzelnachweise ==

Aktuelle Version vom 11. Dezember 2020, 16:35 Uhr

Kupfer(II)-acetat-Monohydrat, dichroitisch

Der Dichroismus (vom griechischen Wort dichroos für „zweifarbig“) ist in der Physik die Eigenschaft bestimmter Materialien, Licht in Abhängigkeit von der Polarisation unterschiedlich stark zu absorbieren.

Bei dichroitischen Materialien gibt es eine optische Achse, so dass beim Betrachten durch einen Polarisationsfilter in der einen Polarisationsrichtung aufgrund der unterschiedlichen Absorption eine andere Farbe zu erkennen ist als in der anderen (ordentlicher und außerordentlicher Strahl). Für dazwischenliegende Polarisationswinkel erhält man Mischfarben, weshalb der Dichroismus insbesondere in der Mineralogie auch als Pleochroismus bezeichnet wird (altgr. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) pléon ‚mehr‘ und {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) chroma ‚Farbe‘ bzw. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) chros ‚Färbung‘, also „Mehrfarbigkeit“).

Beim Auftreten von zwei optischen Achsen gibt es drei Hauptbrechachsen, die Absorption ist in drei Polarisationsrichtungen unterschiedlich, und man spricht von Trichroismus.[1] Die Mehrfarbigkeit äußert sich

  • in einer unterschiedlichen Farbtiefe, Beispiel: der Wechsel von dunkleren Farben zu blasseren Farben bei manchen Turmalinen, oder
  • in einem kompletten Farbwechsel, Beispiel: synthetischer Alexandrit, der ohne Polarisationsfilter einen Farbwechsel gelbgrün – violett – rotbraun aufweist.[2]

Der Dichroismus wirkt sich auch auf das Reflexionsverhalten der Materialien aus.

Weiterhin gibt es röntgenspektroskopische Effekte, die auf der Kopplung von Photonen im Röntgenbereich an bestimmte Elektronenorbitale beruhen und unter dem Begriff Röntgendichroismus zusammengefasst werden.

Dichroismus ist mit der Doppelbrechung verwandt, bei welcher der Realteil des komplexen Brechungsindex von der Polarisation abhängt. Der Imaginärteil ist der Absorptionskoeffizient, und dessen Abhängigkeit von der Polarisation bewirkt gerade den Dichroismus.

Ein anderer verwandter Effekt ist der Alexandrit-Effekt, bei dem die Absorption nicht von der Polarisation, sondern von der Wellenlänge des Lichts abhängt.

Beschreibung

Einige Materialien (hauptsächlich Kristalle) haben eine oder mehrere ausgezeichnete optische Achsen.

Bei optisch einachsigen Materialien wird einfallendes Licht in Abhängigkeit seiner Polarisation (immer bezogen auf den Vektor der elektrischen Feldstärke) in zwei Teilstrahlen aufgespalten: den ordentlichen und den außerordentlichen Strahl. Zeigt das Material unterschiedliches Absorptionsverhalten bezüglich dieser Achse, d. h., wird der ordentliche Strahl stärker bzw. schwächer absorbiert als der außerordentliche, so spricht man von einem dichroitischen Kristall. Bei einem entsprechend dicken Kristall wird daher einer der beiden Teilstrahlen (bis unter eine Schwellwert) absorbiert und nur der andere transmittiert.

Der Effekt ist stark wellenlängenspezifisch und tritt nur in einem schmalen Spektralbereich auf, d. h., bei einer anderen Wellenlänge des Lichts kann der Effekt der Absorption nicht auftreten (man spricht dann von Doppelbrechung) oder sich sogar umkehren. In der Regel sind dichroitische Kristalle doppelbrechend und doppelbrechende dichroitisch; Ausnahmen bestehen beim Vorliegen ganz bestimmter Randbedingungen (z. B. Einschränkungen des Spektralbereichs).[3] Betrachtet man „normales“, d. h. unpolarisiertes, Weißlicht des gesamten sichtbaren Spektrums, so führt die polarisationsabhängige Absorption dichroitischer Materialien zur Schwächung bestimmter Spektralbereiche, was als Änderung der Lichtfarbe wahrnehmbar ist.

Besonders deutlich wird der Dichroismus, wenn man linear polarisiertes Licht auf einen optisch einachsigen Kristall mit zwei Resonanz- bzw. Eigenfrequenzen (Extremfarben) im sichtbaren Spektralbereich einstrahlt und das durchfallende Licht betrachtet. Ändert man nun die Polarisationsrichtung, so werden die Extremfarben sichtbar, wenn die Polarisation senkrecht bzw. parallel zur optischen Achse des Kristalls liegt. Für eine Polarisation dazwischen treten Mischfarben aus diesen beiden Farben auf, weswegen in der Mineralogie häufig allgemein von Pleochroismus gesprochen wird. Hinsichtlich der tatsächlichen Beobachtung ist diese Begriffswahl gerechtfertigt.[1]

Komplexeres Absorptionsverhalten liegt bei optisch mehrachsigen Kristallen vor:

  • optisch zweiachsige Kristalle erzeugen zwei außerordentliche Strahlen, sie zeigen den Trichroismus; ein Einkristall kann höchstens zwei optische Achsen haben.
  • analog dazu zeigen (Poly)Kristalle mit mehr als zwei optischen Achsen den Pleochroismus mit vielen Farben; solche Kristalle können nur durch Aneinanderkitten vieler Einkristalle zustande kommen (polykristallines Material).

Grad des Dichroismus

Der Grad des Dichroismus $ D $ wird bestimmt durch das Verhältnis der Differenz der Absorptionskoeffizienten für die parallele bzw. senkrechte Polarisation ($ K_{\parallel } $ bzw. $ K_{\perp } $) zu ihrer Summe:[4]

$ D={\frac {K_{\parallel }-K_{\perp }}{K_{\parallel }+K_{\perp }}} $

Linearer und zirkularer Dichroismus

Zirkulardichroismus: rechts- und linkszirkular polarisiertes Licht wird in einer Schicht, die ein Enantiomer eines optisch aktiven chiralen Stoffes enthält, verschieden beeinflusst.

Beim Dichroismus wird hinsichtlich der Art der Polarisation des einfallenden Lichts unterschieden:

  • linearer Dichroismus bezeichnet das Phänomen, dass bei linear polarisiertem Licht in Abhängigkeit von der Wellenlänge entweder der außerordentliche Strahl stärker absorbiert wird als der ordentliche, oder umgekehrt. Dieser Effekt wurde Anfang des 19. Jh. erstmals bei Einkristallen des Schmucksteins Turmalin gefunden.[4]
  • analog zur zirkularen Doppelbrechung gibt es auch den Effekt des zirkularen Dichroismus (auch Zirkulardichroismus genannt), der das unterschiedliche Absorptionsverhalten rechts- und linksdrehend polarisierter Strahlung in einem optisch aktivem Material beschreibt. Dieser Effekt wurde erstmals 1896 von Aimé Auguste Cotton beschrieben, vgl. Cotton-Effekt.[4]

Anwendung und Materialien

Angewendet werden dichroitische Materialien z. B. als dichroitischer Polarisator im sichtbaren Bereich des elektromagnetischen Spektrums. Hier können einfache Drahtgitterpolarisatoren nicht mehr eingesetzt werden, denn mit geringer werdender Wellenlänge wird auch der erforderliche Gitterabstand geringer. Dieser ist schon im Bereich des nahen Infrarot nur noch schwer zu realisieren, im sichtbaren Bereich sind Strukturen in der Größenordnung von Molekülen notwendig.

Dem US-amerikanischen Physiker Edwin Herbert Land gelang 1932 erstmals die Herstellung dichroitischer Folien. Dazu richtete er die länglichen Kohlenwasserstoffmoleküle in Polyvinylalkohol durch Erhitzung und Dehnung des Materials entsprechend aus. Solche Polarisationsfolien (Polaroidfilter oder -folie genannt) werden sehr häufig eingesetzt und sind vergleichsweise günstig.[5] Sie können vergleichsweise großflächig hergestellt werden und erreichen einen Polarisationsgrad von über 99 %.[4] Ihre Qualität (z. B. hinsichtlich des erreichbaren Transmissions- oder Polarisationsgrades) liegt jedoch unter der von anderen Polarisatoren. Des Weiteren zeigen sie Nachteile beim Anwendungen mit hohen Lichtleistungen. Die Polarisation aufgrund von Absorption im Material führt zu einer Erwärmung und kann negative Einflüsse auf die Eigenschaften des Polarisators haben, ihn im Extremfall sogar zerstören.

Es gibt aber auch Körper aus mehreren Materialien, die dichroitisches Verhalten zeigen. So können Nadeln aus schwefelsaurem Jodchinin (Herapathit) in Zellulose eingebettet und als dichroitischer Polarisator (Polarisationsfolie) genutzt werden.[3] In gleicher Weise kommen auch dichroitischen Farbstoffe in Kunststofffolien zum Einsatz. Die dazu notwendige einheitliche Ausrichtung der Farbstoffmoleküle wird beispielsweise durch magnetische oder elektrische Felder erreicht.[6]

In der Analytischen Chemie kann der Zirkulardichroismus zur Strukturanalyse optisch aktiver chiraler Moleküle eingesetzt werden.

Zur Verwendung in der Mineralogie siehe folgendes Kapitel.

Pleochroismus in der Mineralogie

In der Mineralogie wird der Dichroismus bei der Charakterisierung von Mineralien verwendet und dabei meist Pleochroismus genannt. Die pleochroitischen Eigenschaften eines Minerals können mit Hilfe eines Dichroskops festgestellt und zur Bestimmung und Prüfung vor allem bei Schmucksteinen genutzt werden. Seine Wirkung auf die Farbtiefe ist vor allem für Edelsteinschleifer von Bedeutung bei der Auswahl des Schliffs, um zu dunkle oder helle (blasse) Farben zu vermeiden.

Pleochroismus tritt bei durchsichtigen, farbigen Steinen ebenso auf wie bei undurchsichtigen. So wird bei der Transmission von natürlichem Licht durch eine ca. 1 mm dicke Platte aus grünem Turmalin (Verdelith) der ordentliche Strahl praktisch vollständig absorbiert, der außerordentliche Strahl hingegen nur geschwächt.[6]

Sonderformen des Pleochroismus sind:

  • der Dichroismus zeigt zwei verschiedene Hauptfärbungen und tritt in uniaxialen Kristallen auf, d. h. in Kristallen mit einer optischen Achse.
  • der Trichroismus zeigt drei verschiedene Hauptfärbungen und tritt in biaxialen Kristallen auf, d. h. in Kristallen mit zwei optischen Achsen.

Keinen Pleochroismus zeigen Mineralien des kubischen Kristallsystems und amorphe Stoffe.

Je nachdem, wie sich ordentlicher und außerordentlicher Strahl farblich unterscheiden, kann man dem Objekt bestimmte Eigenschaften hinsichtlich seiner Kristallstruktur zuweisen; dabei kann es vorkommen, dass bei bestimmten Kristallen bis zu drei verschiedene Farben sichtbar werden, wenn man ihn während der Prüfung dreht:

Farben optische Eigenschaft Kristallstruktur
eine Farbe
Isotrop amorph (Glas), mikrokristallin, Kubisch
zwei Farben
Anisotrop, doppelbrechend, optisch einachsig Trigonal, Tetragonal, Hexagonal
drei Farben bei zwei verschiedenen Richtungen
Anisotrop, doppelbrechend, optisch zweiachsig Triklin, Monoklin, Rhombisch

Theoretische Grundlagen und Begründungen dafür, ob ein solcher Effekt auftreten kann, werden in einem Teilbereich der theoretischen Kristallographie abgehandelt.

Alexandrit, Hiddenit, Kunzit, Rubin, Saphir und Turmalin lassen schon mit bloßem Auge die Mehrfarbigkeit erkennen.

Weitere Beispiele:

  • Andalusit – gelb, olivgrün, rotbraun bis dunkelrot[7]
  • Benitoit – farblos, purpur bis indigoblau oder grünlichblau
  • Cordierit – hellgelb bis grün, violett bis blauviolett, hellblau
  • Malachit – fast farblos, gelblichgrün, tiefgrün
  • Tansanit – purpur, blau und braun oder gelb[8]

Magnetischer Dichroismus

Analog zu magnetooptischen Effekten der Doppelbrechung kann auch der Dichroismus bestimmter Materialien – also die Änderung der Intensität oder der Polarisationszustand des Lichts beim Durchgang durch das Material – durch magnetische Felder beeinflusst werden (magnetisch induzierter Dichroismus). Hierbei werden unterschieden:[9]

  • der lineare magnetische Dichroismus (selten auch magnetischer Lineardichroismus genannt, engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), MLD)
  • der zirkulare magnetische Dichroismus (auch magnetischer zirkularer Dichroismus oder magnetischer Zirkulardichroismus genannt, engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), MCD).

Der zirkulare magnetische Dichroismus tritt als Folge der unterschiedlichen Spinbesetzung gewisser Orbitale bei magnetischen oder magnetisierten Materialien auf, bei denen die Magnetisierung parallel zur Ausbreitungsrichtung des zirkular polarisierten Lichtes ausgerichtet ist. Dabei unterscheidet man:

  • eine polare Geometrie, bei welcher die Magnetisierung senkrecht zur Oberfläche liegt
  • eine longitudinale Geometrie, bei welcher die Magnetisierung parallel zur Oberfläche in der Einfallsebene liegt.

Hier wird die unterschiedliche Absorption für die beiden Polarisationsrichtungen ausgenutzt, die proportional zum Imaginärteil des Brechungsindex ist. Der gemessene Effekt entspricht somit:

$ {\begin{aligned}\mathrm {Im} (n_{+}-n_{-})&=\mathrm {Im} \left({\sqrt {\varepsilon _{xx}+\mathrm {i} \,\varepsilon _{xy}}}-{\sqrt {\varepsilon _{xx}-\mathrm {i} \,\varepsilon _{xy}}}\right)\\&\approx \mathrm {Re} \left({\frac {\varepsilon _{xy}}{\sqrt {\varepsilon _{xx}}}}\right)\end{aligned}} $

Beide Formen des magnetischen Dichroismus treten auch im Röntgenbereich auf (magnetischer Röntgendichroismus):

  • der lineare magnetische Röntgendichroismus (engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), XMLD)
  • der stärkere zirkulare magnetische Röntgendichroismus (engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), XMCD; auch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), MXCD).

Besonders interessant ist MCD im weichen Röntgenbereich (engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), (S)X-MCD), wo die unbesetzte Valenzband-Elektronenstruktur spinaufgelöst gemessen werden kann.

Literatur

  • Herbert Daniel: Physik: Optik, Thermodynamik, Quanten. Walter de Gruyter, 1998, ISBN 3-11-014630-4, S. 192.
  • Ludwig Bergmann, Heinz Niedrig, Clemens Schaefer: Optik: Wellen- und Teilchenoptik. Walter de Gruyter, 2004, ISBN 3-11-017081-7, S. 557–559.
  • Walter Schumann: Edelsteine und Schmucksteine. Alle Arten und Varietäten der Welt. 1600 Einzelstücke. 13. überarbeitete und erweiterte Auflage. BLV Verlags GmbH, München u. a. 2002, ISBN 3-405-16332-3.

Weblinks

Commons: Dichroismus – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. 1,0 1,1 Ludwig Bergmann, Heinz Niedrig, Clemens Schaefer: Optik: Wellen- und Teilchenoptik. Walter de Gruyter, 2004, ISBN 3-11-017081-7, S. 558.
  2. GIA Gemological Institute of America Inc Jeniffer Stone-Sundberg: Challenges in Orienting Alexandrite: The Usambara and Other Optical Effects in Synthetic HOC-Grown Russian Alexandrite. Abgerufen am 10. Juli 2016.
  3. 3,0 3,1 Herbert Daniel: Physik: Optik, Thermodynamik, Quanten. Walter de Gruyter, 1998, ISBN 3-11-014630-4, S. 192.
  4. 4,0 4,1 4,2 4,3 Manfred von Ardenne: Effekte der Physik und ihre Anwendungen. Harri Deutsch Verlag, 2005, ISBN 3-8171-1682-9, S. 777–778.
  5. Rainer Dohlus: Photonik. Oldenbourg Wissenschaftsverlag, 2010, ISBN 978-3-486-58880-4.
  6. 6,0 6,1 Ekbert Hering, Rolf Martin, Martin Stohrer: Physik für Ingenieure. Springer, 2008, ISBN 978-3-540-71855-0, S. 584.
  7. Walter Schumann: Edelsteine und Schmucksteine. Alle Arten und Varietäten. 1900 Einzelstücke. 16. überarbeitete Auflage. BLV Verlag, München 2014, ISBN 978-3-8354-1171-5, S. 194.
  8. Siehe diese Webseite des California Institute of Technology, Pasadena, California, USA für ein anschauliches Bild.
  9. W. Roy Mason: Magnetic Linear Dichroism Spectroscopy. In: A practical guide to magnetic circular dichroism spectroscopy. Wiley-Interscience, 2007, ISBN 978-0-470-06978-3, S. 188 ff. (eingeschränkte Vorschau in der Google-Buchsuche).