Kinetische Energie: Unterschied zwischen den Versionen

Kinetische Energie: Unterschied zwischen den Versionen

imported>Raugeier
(Die letzte Textänderung von 2003:74:6F13:7300:BC34:104E:675D:1B13 wurde verworfen und die Version 168800770 von 2003:D4:13C1:1200:6A05:CAFF:FE0B:31E1 wiederhergestellt.)
 
imported>Snoopy1964
K (Änderungen von 91.44.35.145 (Diskussion) auf die letzte Version von Rsest zurückgesetzt)
 
Zeile 1: Zeile 1:
Die '''kinetische Energie''' (von griechisch ''kinesis'' = Bewegung) oder auch '''Bewegungsenergie''' oder selten '''Geschwindigkeitsenergie''' ist die [[Energie]], die ein Objekt aufgrund seiner [[Kinematik|Bewegung]] enthält. Sie entspricht der [[Arbeit (Physik)|Arbeit]], die aufgewendet werden muss, um das Objekt aus der Ruhe in die momentane Bewegung zu versetzen.
Die '''kinetische Energie''' (von {{grcS|κίνησις|kínēsis|de=Bewegung}}) oder auch '''Bewegungsenergie''' oder selten '''Geschwindigkeitsenergie''' ist die [[Energie]], die ein Objekt aufgrund seiner [[Kinematik|Bewegung]] enthält. Sie entspricht der [[Arbeit (Physik)|Arbeit]], die aufgewendet werden muss, um das Objekt aus der Ruhe in die momentane Bewegung zu versetzen.
Sie hängt von der [[Masse (Physik)|Masse]] und der [[Geschwindigkeit]] des bewegten Körpers ab.
Sie hängt von der [[Masse (Physik)|Masse]] und der [[Geschwindigkeit]] des bewegten Körpers ab.


Als [[Formelzeichen]] für die kinetische Energie wird häufig <math>T</math> oder <math>E_\mathrm{kin}</math> verwendet.
Als [[Formelzeichen]] für die kinetische Energie wird häufig <math>T</math> oder <math>E_\mathrm{kin}</math> verwendet. Die [[Internationales Einheitensystem|SI]]-[[Maßeinheit]] der kinetischen Energie ist das [[Joule]].<ref>vergleiche 1,602·10<sup>−19</sup> J = 1 [[Elektronenvolt|eV]] = 1,602·10<sup>−19</sup> [[C]] · [[Volt|V]] = 1,602·10<sup>−19</sup> [[Ampere|A]]·[[Sekunde|s]]·[[Volt|V]] = 1,602·10<sup>−19</sup> [[Watt (Einheit)|W]]·s = 3,827·10<sup>−23</sup> Kilokalorien [[kcal]] ([[Liste von Größenordnungen der Energie]]).</ref>


Die [[Internationales Einheitensystem|SI]]-[[Maßeinheit]] der kinetischen Energie ist das [[Joule]].
Das Konzept der kinetischen Energie als eine Größe, die bei [[elastischer Stoß|elastischen Stößen]] und vielen anderen mechanischen Vorgängen erhalten bleibt, wurde als ''[[vis viva]]'' (‚Lebendige Kraft‘) von [[Gottfried Wilhelm Leibniz]] eingeführt, der darin in Streit mit den Anhängern von [[René Descartes]] die korrekte Erhaltungsgröße in der [[Mechanik]] sah (1686). Diese Größe war allerdings um den Faktor 2 größer als die heute gültige kinetische Energie. Der Faktor {{Bruch|2}} in der Formel für die kinetische Energie findet sich schon 1726 bei [[Daniel Bernoulli]].<ref>[[István Szabó]]: ''Geschichte der mechanischen Prinzipien.'' Birkhäuser, S.&nbsp;71.</ref> Das eigentliche Energiekonzept bildete sich aber erst im 19. Jahrhundert heraus, insbesondere in der Schule der angewandten Mathematik in Frankreich und mit dem Aufkommen der [[Thermodynamik]]. In der Mechanik des 18. Jahrhunderts, deren Hauptuntersuchungsgegenstand die [[Himmelsmechanik]] war, spielte es noch keine große Rolle.<ref>[[Max Jammer]]: Artikel ''Energie.'' In: Donald Borchert (Hrsg.): ''Encyclopedia of Philosophy.'' Thomson Gale, 2006.</ref>
 
Das Konzept der kinetischen Energie als einer Größe, die bei [[elastischer Stoß|elastischen Stößen]] und vielen anderen mechanischen Vorgängen erhalten bleibt, wurde als ''[[vis viva]]'' (''„Lebendige Kraft“'') von [[Gottfried Wilhelm Leibniz]] eingeführt, der darin in Streit mit den Anhängern von [[René Descartes]] die korrekte Erhaltungsgröße in der [[Mechanik]] sah (1686). Diese Größe war allerdings um den Faktor 2 größer als die heute gültige kinetische Energie. Der Faktor 1/2 in der Formel für die kinetische Energie findet sich schon 1726 bei [[Daniel Bernoulli]].<ref>Szabo, Geschichte der mechanischen Prinzipien, Birkhäuser, S.&nbsp;71.</ref> Das eigentliche Energiekonzept bildete sich aber erst im 19. Jahrhundert heraus, insbesondere in der Schule der angewandten Mathematik in Frankreich und mit dem Aufkommen der [[Thermodynamik]]. In der Mechanik des 18. Jahrhunderts, deren Hauptuntersuchungsgegenstand die [[Himmelsmechanik]] war, spielte es noch keine große Rolle.<ref>[[Max Jammer]], Artikel Energie, in Donald Borchert (Hrsg.), Encyclopedia of Philosophy, Thomson Gale 2006.</ref>


== Kinetische Energie in der klassischen Mechanik ==
== Kinetische Energie in der klassischen Mechanik ==


=== Massenpunkt ===
=== Massenpunkt ===
In der [[Klassische Mechanik|klassischen Mechanik]] ist die kinetische Energie ''E'' eines Massenpunktes abhängig von seiner Masse <math>m</math> und seiner Geschwindigkeit <math>v</math>. Es gilt:
In der [[Klassische Mechanik|klassischen Mechanik]] ist die kinetische Energie <math>E</math> eines Massenpunktes abhängig von seiner Masse <math>m</math> und seiner Geschwindigkeit <math>v</math>:
:<math>E_\mathrm{kin} = \frac{1}{2} \ m v^2.</math>
:<math>E_\mathrm{kin} = \frac{1}{2} m v^2</math>


Fährt beispielsweise ein Auto der Masse <math>m = 1000 \ \mathrm{kg}</math> mit einer Geschwindigkeit von <math>v = 100 \ \mathrm{km} / \mathrm{h}</math>, hat es demzufolge eine kinetische Energie von <math>E = 1 / 2 \cdot 1000 \, \mathrm{kg} \cdot \left( 100 \ \mathrm{km} / \mathrm{h} \right) ^2 \approx 1 / 2 \cdot 1000 \ \mathrm{kg} \cdot \left( 27{,}78\ \mathrm{m} / \mathrm{s} \right) ^2 = 385\,800 \ \mathrm J</math>.
Fährt beispielsweise ein Auto der Masse <math>m = 1000 \,\mathrm{kg}</math> mit einer Geschwindigkeit von <math>v = 100 \,\mathrm{km} / \mathrm{h}</math>, hat es demzufolge eine kinetische Energie von <math>E = \frac{1}{2} \cdot 1000 \, \mathrm{kg} \cdot \left( 100 \,\frac{\mathrm{km}}{\mathrm{h}} \right) ^2 \approx \frac{1}{2} \cdot 1000 \,\mathrm{kg} \cdot \left( 27{,}78\,\frac{\mathrm{m}}{\mathrm{s}} \right) ^2 \approx  385\,800 \,\mathrm J</math> (das [[Joule]], <math>\mathrm{J}</math>, ist die [[Internationales Einheitensystem|SI]]-Einheit der Energie).


Wenn man den Bewegungszustand des Körpers nicht durch seine Geschwindigkeit <math>v</math>, sondern durch seinen Impuls <math>p</math> beschreibt, wie das u.&nbsp;a. in der Hamiltonschen Mechanik üblich ist, so gilt für die kinetische Energie (wegen ''p = mv''):
Wenn man den Bewegungszustand des Körpers nicht durch seine Geschwindigkeit <math>v</math>, sondern durch seinen [[Impuls]] <math>p</math> beschreibt, wie das u.&nbsp;a. in der [[Hamiltonsche Mechanik|Hamiltonschen Mechanik]] üblich ist, so gilt für die kinetische Energie (wegen <math>p = m v</math>):
:<math>E_\mathrm{kin} = \frac{p^2}{2 \ m}</math>
:<math>E_\mathrm{kin} = \frac{p^2}{2m}</math>


==== Einfache Herleitung ====
==== Einfache Herleitung ====
Wird ein Körper der Masse <math>m</math> aus der Ruhe heraus auf die Geschwindigkeit <math>v</math> beschleunigt, so muss man dafür die [[Beschleunigungsarbeit]] <math>W</math> zufügen. Bei konstanter Kraft gilt:
Wird ein Körper der Masse <math>m</math> aus der Ruhe heraus auf die Geschwindigkeit <math>v</math> beschleunigt, so muss man dafür die [[Beschleunigungsarbeit]] <math>W</math> zufügen. Bei konstanter Kraft gilt:
:<math>W = Fs</math>
:<math>W = Fs</math>,
Die Kraft erteilt dem Körper eine [[Gleichmäßig beschleunigte Bewegung|gleichmäßige Beschleunigung]] <math>a</math>, nach der [[Grundgleichung der Mechanik]] ist <math>F=ma</math>. Nach einer Zeit <math>t</math> ist die Geschwindigkeit <math>v=at</math> und es wurde der Weg <math>s= \tfrac 1 2 a t^2</math> zurückgelegt. Alles oben eingesetzt ergibt die Beschleunigungsarbeit
wobei <math>s</math> die in Richtung der Kraft zurückgelegte Strecke ist.
:<math>W = m a \cdot \frac 1 2 \ a t^2 = \frac 1 2 \ m v^2</math>.
Die Kraft erteilt dem Körper eine [[Gleichmäßig beschleunigte Bewegung|gleichmäßige Beschleunigung]] <math>a</math>, nach der [[Grundgleichung der Mechanik]] ist <math>F=ma</math>. Nach einer Zeit <math>t</math> ist die Geschwindigkeit <math>v=at</math> erreicht, und es wurde die Strecke <math>s= \tfrac 1 2 a t^2</math> zurückgelegt. Alles oben eingesetzt, ergibt die Beschleunigungsarbeit
:<math>W = m a \cdot \frac 12 a t^2 = \frac 1 2 m v^2</math>.
Da die kinetische Energie in Ruhe den Wert Null hat, erreicht sie nach dem Beschleunigungsvorgang genau diesen Wert <math>W</math>. Folglich gilt für einen Körper der Masse <math>m</math> mit der Geschwindigkeit <math>v</math>:
Da die kinetische Energie in Ruhe den Wert Null hat, erreicht sie nach dem Beschleunigungsvorgang genau diesen Wert <math>W</math>. Folglich gilt für einen Körper der Masse <math>m</math> mit der Geschwindigkeit <math>v</math>:
:<math>E_\mathrm{kin} = \frac 1 2 \ m v^2</math>.
:<math>E_\mathrm{kin} = \frac 12 m v^2</math>


==== Spezielle Koordinatensysteme ====
==== Bewegung in einem Koordinatensystem ====
In speziellen [[Koordinatensystem]]en hat dieser Ausdruck die Form:
Beschreibt man die Bewegung eines Körpers in einem Koordinatensystem, so lässt sich die kinetische Energie je nach Wahl des [[Koordinatensystem]]s so berechnen:
* [[Kartesisches Koordinatensystem|Kartesische Koordinaten]] (''x'', ''y'', ''z''):
* [[Kartesisches Koordinatensystem|Kartesische Koordinaten]] (''x'', ''y'', ''z''):


:<math>E_\mathrm{kin} = \frac{1}{2} \ m \left(\dot x^2 + \dot y^2 + \dot z^2\right)</math>
:<math>E_\mathrm{kin} = \frac{1}{2} m \left(\dot x^2 + \dot y^2 + \dot z^2\right)</math>


* Ebene [[Polarkoordinaten]] (<math> r, \varphi </math>):
* Ebene [[Polarkoordinaten]] (<math> r, \varphi </math>):


:<math>E_\mathrm{kin} = \frac{1}{2}\ m \left(\dot r^2 + r^2 \dot \varphi^2 \right)</math>
:<math>E_\mathrm{kin} = \frac{1}{2} m \left(\dot r^2 + r^2 \dot \varphi^2 \right)</math>


* [[Zylinderkoordinaten]] (<math> r, \varphi, z </math>):
* [[Kugelkoordinaten]] (<math> r, \varphi, \vartheta </math>):


:<math>E_\mathrm{kin} = \frac{1}{2} \ m \left(\dot r^2 + r^2 \dot \varphi^2 + \dot z^2 \right)</math>
:<math>E_\mathrm{kin} = \frac{1}{2} m \left(r^2 \left[\dot \vartheta^2 + \dot \varphi^2 \sin^2\vartheta \right] + \dot r^2 \right)</math>


* [[Kugelkoordinaten]] (<math> r, \varphi, \vartheta </math>):
* [[Zylinderkoordinaten]] (<math> r, \varphi, z </math>):


:<math>E_\mathrm{kin} = \frac{1}{2} \ m \left(r^2 \left[\dot \vartheta^2 + \dot \varphi^2 \sin^2\vartheta \right] + \dot r^2 \right) \,.</math>
:<math>E_\mathrm{kin} = \frac{1}{2} m \left(\dot r^2 + r^2 \dot \varphi^2 + \dot z^2 \right)</math>


Dabei bedeutet der Punkt über der Koordinate ihre zeitliche Änderung, die [[Differentialrechnung#Ableitungsberechnung|Ableitung]] nach der Zeit.
Dabei bedeutet der Punkt über der Koordinate ihre zeitliche Änderung, die [[Differentialrechnung#Ableitungsberechnung|Ableitung]] nach der Zeit. Die Formeln berücksichtigen nicht die Energie, die möglicherweise in der Eigenrotation des Körpers steckt.


=== Starre Körper ===
=== Starre Körper ===
Die kinetische Energie eines [[Starrer Körper|starren Körpers]] mit der Gesamtmasse <math>M</math> und der Geschwindigkeit <math>v_\mathrm{s}</math> seines [[Massenmittelpunkt|Schwerpunkt]]es ist die Summe der Energie aus der Bewegung des Schwerpunkts ([[Translation (Physik)|Translationsenergie]]) und der [[Rotationsenergie]] aus der Drehung um den Schwerpunkt:
Die kinetische Energie eines [[Starrer Körper|starren Körpers]] mit der Gesamtmasse <math>M</math> und der Geschwindigkeit <math>v_\mathrm{s}</math> seines [[Massenmittelpunkt|Schwerpunktes]] ist die Summe der Energie aus der Bewegung des Schwerpunkts ([[Translation (Physik)|Translationsenergie]]) und der [[Rotationsenergie]] aus der Drehung um den Schwerpunkt:
:<math>E_\mathrm{kin} = \frac{1}{2} \ M {v_\mathrm{s}}^2 + \frac{1}{2} \ J_\mathrm{s} \omega^2 \,.</math>
:<math>E_\mathrm{kin} = \frac{1}{2} M {v_\mathrm{s}}^2 + \frac{1}{2} J_\mathrm{s} \omega^2</math>
Hier ist <math>J_\mathrm{s}</math> das [[Trägheitsmoment]] des Körpers bezüglich seines Schwerpunktes und <math>\omega</math> die [[Winkelgeschwindigkeit]] der Drehung.
Hier ist <math>J_\mathrm{s}</math> das [[Trägheitsmoment]] des Körpers bezüglich seines Schwerpunktes und <math>\omega</math> die [[Winkelgeschwindigkeit]] der Drehung.


Mit dem [[Trägheitstensor]] <math>I</math> wird dies allgemein geschrieben als
Mit dem [[Trägheitstensor]] <math>I</math> wird dies allgemein geschrieben als:


:<math>E_\mathrm{kin} = \frac{1}{2} \ M {v_\mathrm{s}}^2 + \frac{1}{2} \ \boldsymbol{\omega}^T I \boldsymbol\omega \,.</math>
:<math>E_\mathrm{kin} = \frac{1}{2} M {v_\mathrm{s}}^2 + \frac{1}{2} \boldsymbol{\omega}^T I \boldsymbol\omega</math>


=== Hydrodynamik ===
=== Hydrodynamik ===
In der [[Hydrodynamik]] wird oft statt der kinetischen Energie die kinetische Energie''dichte'' angegeben. Diese wird meist durch ein kleines <math>e</math> oder <math>\epsilon</math> ausgedrückt:
In der [[Hydrodynamik]] wird oft statt der kinetischen Energie die kinetische Energie''dichte'' angegeben. Diese wird meistens durch ein kleines <math>e</math> oder <math>\epsilon</math> ausgedrückt:


:<math>e_\mathrm{kin} = \frac{1}{2} \ \rho v^2 \,.</math>
:<math>e_\mathrm{kin} = \frac{ E_\mathrm{kin}}{ V } = \frac{1}{2} \rho v^2</math>


Hierbei bezeichnet <math>\rho</math> die [[Dichte]].
Hierbei bezeichnet <math>\rho</math> die [[Dichte]] und ''V'' das Volumen.


== Kinetische Energie in der relativistischen Mechanik ==
== Kinetische Energie in der relativistischen Mechanik ==
[[Datei:E_Kin.jpg|thumb|400px|Relativistische und klassische kinetische Energie im Vergleich.]]
[[Datei:E Kin.jpg|mini|400px|Relativistische und klassische kinetische Energie im Vergleich, mit <math>\beta = \frac{v}{c}</math>]]


In der [[Spezielle Relativitätstheorie|relativistischen Physik]] gilt die oben angegebene Abhängigkeit der kinetischen Energie von der Geschwindigkeit nur näherungsweise für Geschwindigkeiten deutlich kleiner als die [[Lichtgeschwindigkeit]]. Aus dem Ansatz, dass die kinetische Energie <math>E_\mathrm{kin}</math> die Differenz aus Gesamtenergie und [[Ruheenergie]] ist, folgt:
In der [[Spezielle Relativitätstheorie|relativistischen Physik]] gilt die oben angegebene Abhängigkeit der kinetischen Energie von der Geschwindigkeit nur näherungsweise für Geschwindigkeiten deutlich kleiner als die [[Lichtgeschwindigkeit]]. Aus dem Ansatz, dass die kinetische Energie <math>E_\mathrm{kin}</math> die Differenz aus Gesamtenergie und [[Ruheenergie]] ist, folgt:


:<math>E_\mathrm{kin} = \gamma m c^2 - m c^2 = \left(\gamma - 1\right) m c^2.</math>
:<math>E_\mathrm{kin} = \gamma m c^2 - m c^2 = \left(\gamma - 1\right) m c^2</math>
Dabei ist ''c'' die Lichtgeschwindigkeit, ''m'' die Masse und γ der [[Lorentzfaktor]]
Dabei ist <math> c </math> die Lichtgeschwindigkeit, <math> m </math> die Masse und <math> \gamma </math> der [[Lorentzfaktor]]
:<math>\gamma = \frac{1}{\sqrt{1 - (v/c)^2}}.</math>
:<math>\gamma = \frac{1}{\sqrt{1 - (v/c)^2}}.</math>


Aus der [[Taylorreihe|Taylor-Entwicklung]] nach <math>v/c</math> erhält man
Aus der [[Taylorreihe|Taylor-Entwicklung]] nach <math>v/c</math> erhält man


:<math>E_\mathrm{kin} \approx \frac{1}{2} \ m v^2 + \frac{3}{8}\frac{m v^4}{c^2} + \dots</math>
:<math>E_\mathrm{kin} = \frac{1}{2} m v^2 + \frac{3}{8}\frac{m v^4}{c^2} + \cdots</math>,


also für <math>v \ll c</math> wieder die Newtonsche kinetische Energie.
also für <math>v \ll c</math> wieder die Newtonsche kinetische Energie.


Da die Energie über alle Grenzen wachsen müsste, wenn die Geschwindigkeit gegen die Lichtgeschwindigkeit geht, <math>\lim_{v \to c}E_\mathrm{kin} = \infty,</math> ist es nicht möglich, einen massebehafteten Körper auf Lichtgeschwindigkeit zu beschleunigen.  
Da die Energie über alle Grenzen wachsen müsste, wenn die Geschwindigkeit gegen die Lichtgeschwindigkeit geht, <math>\lim_{v \to c}E_\mathrm{kin} = \infty,</math> ist es nicht möglich, einen massebehafteten Körper auf Lichtgeschwindigkeit zu beschleunigen.


Das Diagramm rechts zeigt für einen Körper mit der Masse von <math>m = 1\, \mathrm{kg}</math> die relativistische und die Newtonsche kinetische Energie als Funktion der Geschwindigkeit (gemessen in Vielfachen der Lichtgeschwindigkeit).
Das Diagramm rechts zeigt für einen Körper mit der Masse von <math>m = 1\, \mathrm{kg}</math> die relativistische und die Newtonsche kinetische Energie als Funktion der Geschwindigkeit (gemessen in Vielfachen der Lichtgeschwindigkeit).
Zeile 86: Zeile 85:
;Anwendungsbeispiele
;Anwendungsbeispiele
{{Hauptartikel|Tests der relativistischen Energie-Impuls-Beziehung}}
{{Hauptartikel|Tests der relativistischen Energie-Impuls-Beziehung}}
[[Datei:Elektronengeschwindigkeit.png|thumb|Relativistische Geschwindigkeit eines Elektrons nach Durchlaufen eines elektrischen Felds.]]
[[Datei:Elektronengeschwindigkeit.png|mini|Relativistische Geschwindigkeit eines Elektrons nach Durchlaufen eines elektrischen Felds]]
Im elektrischen Feld nimmt die Energie eines Elektrons der Ladung <math>e</math> und der Masse <math>m</math> linear mit der durchlaufenen Beschleunigungsspannung <math>U</math> zu. Die kinetische Energie ist nun die Differenz der relativistischen Gesamtenergie <math>E</math> und der Ruheenergie <math>E</math><sub>0</sub>.<ref>A. P. French: ''Die spezielle Relativitätstheorie – M.I.T. Einführungskurs Physik'' 1968, S.&nbsp;19–23.</ref>
Im elektrischen Feld nimmt die Energie eines Elektrons der Ladung <math>e</math> und der Masse <math>m</math> linear mit der durchlaufenen Beschleunigungsspannung <math>U</math> zu. Die kinetische Energie ist nun die Differenz der relativistischen Gesamtenergie <math>E</math> und der Ruheenergie <math>E</math><sub>0</sub>.<ref>A. P. French: ''Die spezielle Relativitätstheorie&nbsp;– M.I.T. Einführungskurs Physik'' 1968, S.&nbsp;19–23.</ref>
Die kinetische Energie <math>eU</math> ist also:
Die kinetische Energie <math>eU</math> ist also:
:<math>e \cdot U = E - E_0</math>
:<math>e \cdot U = E - E_0</math>
Beachtet man, dass für die Gesamtenergie  
Beachtet man, dass für die Gesamtenergie
:<math>E^2 = c^2p^2 + E_0^2\quad (*)</math>  
:<math>E^2 = c^2p^2 + E_0^2\quad (*)</math>
gilt (<math>p</math>: relativistischer Impuls) und zwischen Impuls und Gesamtenergie der Zusammenhang
gilt (<math>p</math>: relativistischer Impuls) und zwischen Impuls und Gesamtenergie der Zusammenhang
:<math>cp = E \cdot \frac{v}{c}</math>  
:<math>cp = E \cdot \frac{v}{c}</math>
besteht, folgt für die Gesamtenergie aus <math>(*)</math> also:
besteht, folgt für die Gesamtenergie aus <math>(*)</math> also:
:<math>E(v) = \frac{E_0}{\sqrt{1 - \frac{v^2}{c^2}}}</math>
:<math>E(v) = \frac{E_0}{\sqrt{1 - \frac{v^2}{c^2}}}</math>
Zeile 100: Zeile 99:
Bei Beschleunigungsspannungen unterhalb 1&nbsp;kV lässt sich die Geschwindigkeit aus dem klassischen Ansatz für die kinetische Energie abschätzen, bei höheren Energien muss relativistisch gerechnet werden. Bereits bei einer Spannung von 10&nbsp;kV erreichen die Elektronen eine Geschwindigkeit von fast 20 % der Lichtgeschwindigkeit, bei 1&nbsp;MV 94 %.
Bei Beschleunigungsspannungen unterhalb 1&nbsp;kV lässt sich die Geschwindigkeit aus dem klassischen Ansatz für die kinetische Energie abschätzen, bei höheren Energien muss relativistisch gerechnet werden. Bereits bei einer Spannung von 10&nbsp;kV erreichen die Elektronen eine Geschwindigkeit von fast 20 % der Lichtgeschwindigkeit, bei 1&nbsp;MV 94 %.


Der [[Large Hadron Collider]] führt Protonen eine Energie von 7&nbsp;TeV zu. Die Protonen (Ruheenergie 940&nbsp;MeV) werden dabei auf das 0,999999991-fache der Lichtgeschwindigkeit beschleunigt.
Der [[Large Hadron Collider]] führt Protonen eine kinetische Energie von 6,5&nbsp;TeV zu. Diese Energie ist etwa 8 tausend Mal größer als die Ruheenergie eines Protons. Bei einer Kollision zwischen entgegengesetzt beschleunigten Protonen können Teilchen mit einer entsprechend hohen Ruheenergie entstehen.


== Kinetische Energie in der Quantenmechanik ==
== Kinetische Energie in der Quantenmechanik ==
In der [[Quantenmechanik]] ist der [[Erwartungswert]] <math>\langle\hat{E}_\mathrm{kin}\rangle</math> der kinetischen Energie eines Teilchens der Masse <math>m</math>, welches durch die [[Wellenfunktion]] <math>\vert\psi\rangle</math> beschrieben wird, gegeben durch
In der [[Quantenmechanik]] ist der [[Erwartungswert]] <math>\langle\hat{E}_\mathrm{kin}\rangle</math> der kinetischen Energie eines Teilchens der Masse <math>m</math>, welches durch die [[Wellenfunktion]] <math>\vert\psi\rangle</math> beschrieben wird, gegeben durch
:<math>\langle\hat{E}_\mathrm{kin}\rangle = \frac{1}{2 \ m}\langle\psi |\hat P^2 | \psi \rangle</math>,
:<math>\langle\hat{E}_\mathrm{kin}\rangle = \frac{1}{2 m}\langle\psi |\hat P^2 | \psi \rangle</math>,


wobei <math>\hat P^2</math> das Quadrat des [[Impuls-Operator]]s des Teilchens ist.
wobei <math>\hat P^2</math> das Quadrat des [[Impulsoperator]]s des Teilchens ist.


Im Formalismus der [[Dichtefunktionaltheorie (Quantenphysik)|Dichtefunktionaltheorie]] ist nur vorausgesetzt, dass die Elektronendichte bekannt ist, das heißt, dass die Wellenfunktion formal nicht bekannt sein muss. Mit der Elektronendichte <math>\rho(\mathbf{r})</math> ist das exakte Funktional der kinetischen Energie für <math>N</math> Elektronen unbekannt; falls jedoch im Fall <math>N=1</math> ein einzelnes Elektron betrachtet wird, so kann die kinetische Energie als
Im Formalismus der [[Dichtefunktionaltheorie (Quantenphysik)|Dichtefunktionaltheorie]] ist nur vorausgesetzt, dass die Elektronendichte bekannt ist, das heißt, dass die Wellenfunktion formal nicht bekannt sein muss. Mit der Elektronendichte <math>\rho(\mathbf{r})</math> ist das exakte Funktional der kinetischen Energie für <math>N</math> Elektronen unbekannt; falls jedoch im Fall <math>N=1</math> ein einzelnes Elektron betrachtet wird, so kann die kinetische Energie als
Zeile 120: Zeile 119:


== Literatur ==
== Literatur ==
* Wolfgang Nolting: ''Klassische Mechanik.'' In: ''Grundkurs Theoretische Physik.'' Bd.&nbsp;1, 8.&nbsp;Auflage. Springer, Berlin 2008, ISBN 978-3-540-34832-0.
* [[Wolfgang Nolting (Physiker)|Wolfgang Nolting]]: ''Klassische Mechanik.'' In: ''Grundkurs Theoretische Physik.'' Bd.&nbsp;1, 8.&nbsp;Auflage. Springer, Berlin 2008, ISBN 978-3-540-34832-0.
* Richard P. Feynman: ''Feynman-Vorlesungen über Physik. Mechanik, Strahlung, Wärme'' 5., verbesserte Auflage, definitive Edition. Oldenbourg, München / Wien 2007, ISBN 978-3-486-58444-8 (= ''The Feynman Lectures on Physics'', Band 1).
* [[Richard P. Feynman]]: ''Feynman-Vorlesungen über Physik. Mechanik, Strahlung, Wärme'' 5., verbesserte Auflage, definitive Edition. Oldenbourg, München / Wien 2007, ISBN 978-3-486-58444-8 (= ''The Feynman Lectures on Physics'', Band 1).
* Paul A. Tipler: ''Physik.'' 3.&nbsp;korrigierter Nachdruck der 1.&nbsp;Auflage. 1994, Spektrum Akademischer Verlag, Heidelberg / Berlin 2000, ISBN 3-86025-122-8.
* [[Paul A. Tipler]]: ''Physik.'' 3.&nbsp;korrigierter Nachdruck der 1.&nbsp;Auflage. 1994, Spektrum Akademischer Verlag, Heidelberg / Berlin 2000, ISBN 3-86025-122-8.
* Ludwig Bergmann, Clemens Schaefer: ''Mechanik&nbsp;– Akustik&nbsp;– Wärme.'' In: ''Lehrbuch der Experimentalphysik.'' Bd.&nbsp;1, 12.&nbsp;Auflage. Walter de Gruyter, Berlin 2008, ISBN 978-3-11-019311-4.
* [[Ludwig Bergmann (Physiker)|Ludwig Bergmann]], [[Clemens Schaefer (Physiker)|Clemens Schaefer]]: ''Mechanik&nbsp;– Akustik&nbsp;– Wärme.'' In: ''Lehrbuch der Experimentalphysik.'' Bd.&nbsp;1, 12.&nbsp;Auflage. Walter de Gruyter, Berlin 2008, ISBN 978-3-11-019311-4.
* {{cite book|author=Rainer Müller|title=Klassische Mechanik: Vom Weitsprung zum Marsflug|url=http://books.google.com/books?id=fqmnCgAAQBAJ|date=25. September 2015|publisher=De Gruyter|isbn=978-3-11-044530-5}}
* {{cite book|author=[[Rainer Müller (Physiker)|Rainer Müller]]|title=Klassische Mechanik: Vom Weitsprung zum Marsflug|url=https://books.google.de/books?id=fqmnCgAAQBAJ&hl=de|date=25. September 2015|publisher=De Gruyter|isbn=978-3-11-044530-5}}
* {{cite book|author=Dieter Meschede|title=Gerthsen Physik|url=http://books.google.com/books?id=qW7dBgAAQBAJ|date=27. Februar 2015|publisher=Springer-Verlag|isbn=978-3-662-45977-5}}
* {{cite book|author=[[Dieter Meschede]]|title=Gerthsen Physik|url=https://books.google.de/books?id=qW7dBgAAQBAJ&hl=de|date=27. Februar 2015|publisher=Springer-Verlag|isbn=978-3-662-45977-5}}
 
== Weblinks ==
* {{DNB-Portal|4163880-3}}


== Einzelnachweise ==
== Einzelnachweise ==

Aktuelle Version vom 2. März 2022, 12:07 Uhr

Die kinetische Energie (von {{Modul:Vorlage:lang}} Modul:ISO15924:97: attempt to index field 'wikibase' (a nil value)) oder auch Bewegungsenergie oder selten Geschwindigkeitsenergie ist die Energie, die ein Objekt aufgrund seiner Bewegung enthält. Sie entspricht der Arbeit, die aufgewendet werden muss, um das Objekt aus der Ruhe in die momentane Bewegung zu versetzen. Sie hängt von der Masse und der Geschwindigkeit des bewegten Körpers ab.

Als Formelzeichen für die kinetische Energie wird häufig T oder Ekin verwendet. Die SI-Maßeinheit der kinetischen Energie ist das Joule.[1]

Das Konzept der kinetischen Energie als eine Größe, die bei elastischen Stößen und vielen anderen mechanischen Vorgängen erhalten bleibt, wurde als vis viva (‚Lebendige Kraft‘) von Gottfried Wilhelm Leibniz eingeführt, der darin in Streit mit den Anhängern von René Descartes die korrekte Erhaltungsgröße in der Mechanik sah (1686). Diese Größe war allerdings um den Faktor 2 größer als die heute gültige kinetische Energie. Der Faktor 12 in der Formel für die kinetische Energie findet sich schon 1726 bei Daniel Bernoulli.[2] Das eigentliche Energiekonzept bildete sich aber erst im 19. Jahrhundert heraus, insbesondere in der Schule der angewandten Mathematik in Frankreich und mit dem Aufkommen der Thermodynamik. In der Mechanik des 18. Jahrhunderts, deren Hauptuntersuchungsgegenstand die Himmelsmechanik war, spielte es noch keine große Rolle.[3]

Kinetische Energie in der klassischen Mechanik

Massenpunkt

In der klassischen Mechanik ist die kinetische Energie E eines Massenpunktes abhängig von seiner Masse m und seiner Geschwindigkeit v:

Ekin=12mv2

Fährt beispielsweise ein Auto der Masse m=1000kg mit einer Geschwindigkeit von v=100km/h, hat es demzufolge eine kinetische Energie von E=121000kg(100kmh)2121000kg(27,78ms)2385800J (das Joule, J, ist die SI-Einheit der Energie).

Wenn man den Bewegungszustand des Körpers nicht durch seine Geschwindigkeit v, sondern durch seinen Impuls p beschreibt, wie das u. a. in der Hamiltonschen Mechanik üblich ist, so gilt für die kinetische Energie (wegen p=mv):

Ekin=p22m

Einfache Herleitung

Wird ein Körper der Masse m aus der Ruhe heraus auf die Geschwindigkeit v beschleunigt, so muss man dafür die Beschleunigungsarbeit W zufügen. Bei konstanter Kraft gilt:

W=Fs,

wobei s die in Richtung der Kraft zurückgelegte Strecke ist. Die Kraft erteilt dem Körper eine gleichmäßige Beschleunigung a, nach der Grundgleichung der Mechanik ist F=ma. Nach einer Zeit t ist die Geschwindigkeit v=at erreicht, und es wurde die Strecke s=12at2 zurückgelegt. Alles oben eingesetzt, ergibt die Beschleunigungsarbeit

W=ma12at2=12mv2.

Da die kinetische Energie in Ruhe den Wert Null hat, erreicht sie nach dem Beschleunigungsvorgang genau diesen Wert W. Folglich gilt für einen Körper der Masse m mit der Geschwindigkeit v:

Ekin=12mv2

Bewegung in einem Koordinatensystem

Beschreibt man die Bewegung eines Körpers in einem Koordinatensystem, so lässt sich die kinetische Energie je nach Wahl des Koordinatensystems so berechnen:

  • Kartesische Koordinaten (x, y, z):
Ekin=12m(x˙2+y˙2+z˙2)
  • Ebene Polarkoordinaten (r,φ):
Ekin=12m(r˙2+r2φ˙2)
  • Kugelkoordinaten (r,φ,ϑ):
Ekin=12m(r2[ϑ˙2+φ˙2sin2ϑ]+r˙2)
  • Zylinderkoordinaten (r,φ,z):
Ekin=12m(r˙2+r2φ˙2+z˙2)

Dabei bedeutet der Punkt über der Koordinate ihre zeitliche Änderung, die Ableitung nach der Zeit. Die Formeln berücksichtigen nicht die Energie, die möglicherweise in der Eigenrotation des Körpers steckt.

Starre Körper

Die kinetische Energie eines starren Körpers mit der Gesamtmasse M und der Geschwindigkeit vs seines Schwerpunktes ist die Summe der Energie aus der Bewegung des Schwerpunkts (Translationsenergie) und der Rotationsenergie aus der Drehung um den Schwerpunkt:

Ekin=12Mvs2+12Jsω2

Hier ist Js das Trägheitsmoment des Körpers bezüglich seines Schwerpunktes und ω die Winkelgeschwindigkeit der Drehung.

Mit dem Trägheitstensor I wird dies allgemein geschrieben als:

Ekin=12Mvs2+12ωTIω

Hydrodynamik

In der Hydrodynamik wird oft statt der kinetischen Energie die kinetische Energiedichte angegeben. Diese wird meistens durch ein kleines e oder ϵ ausgedrückt:

ekin=EkinV=12ρv2

Hierbei bezeichnet ρ die Dichte und V das Volumen.

Kinetische Energie in der relativistischen Mechanik

Relativistische und klassische kinetische Energie im Vergleich, mit β=vc

In der relativistischen Physik gilt die oben angegebene Abhängigkeit der kinetischen Energie von der Geschwindigkeit nur näherungsweise für Geschwindigkeiten deutlich kleiner als die Lichtgeschwindigkeit. Aus dem Ansatz, dass die kinetische Energie Ekin die Differenz aus Gesamtenergie und Ruheenergie ist, folgt:

Ekin=γmc2mc2=(γ1)mc2

Dabei ist c die Lichtgeschwindigkeit, m die Masse und γ der Lorentzfaktor

γ=11(v/c)2.

Aus der Taylor-Entwicklung nach v/c erhält man

Ekin=12mv2+38mv4c2+,

also für vc wieder die Newtonsche kinetische Energie.

Da die Energie über alle Grenzen wachsen müsste, wenn die Geschwindigkeit gegen die Lichtgeschwindigkeit geht, limvcEkin=, ist es nicht möglich, einen massebehafteten Körper auf Lichtgeschwindigkeit zu beschleunigen.

Das Diagramm rechts zeigt für einen Körper mit der Masse von m=1kg die relativistische und die Newtonsche kinetische Energie als Funktion der Geschwindigkeit (gemessen in Vielfachen der Lichtgeschwindigkeit).

Da die Geschwindigkeit eines bewegten Körpers vom Bezugssystem abhängt, gilt dies auch für dessen kinetische Energie. Das gilt in Newtonscher und in relativistischer Physik.

Anwendungsbeispiele
Relativistische Geschwindigkeit eines Elektrons nach Durchlaufen eines elektrischen Felds

Im elektrischen Feld nimmt die Energie eines Elektrons der Ladung e und der Masse m linear mit der durchlaufenen Beschleunigungsspannung U zu. Die kinetische Energie ist nun die Differenz der relativistischen Gesamtenergie E und der Ruheenergie E0.[4] Die kinetische Energie eU ist also:

eU=EE0

Beachtet man, dass für die Gesamtenergie

E2=c2p2+E02()

gilt (p: relativistischer Impuls) und zwischen Impuls und Gesamtenergie der Zusammenhang

cp=Evc

besteht, folgt für die Gesamtenergie aus () also:

E(v)=E01v2c2

Berechnet man nun die Differenz aus E(v) und E0, setzt den Ausdruck gleich eU und löst nach v auf, erhält man abschließend:

v=c1(11+eUE0)2 mit der Ruheenergie eines Elektrons E0=0,51MeV

Bei Beschleunigungsspannungen unterhalb 1 kV lässt sich die Geschwindigkeit aus dem klassischen Ansatz für die kinetische Energie abschätzen, bei höheren Energien muss relativistisch gerechnet werden. Bereits bei einer Spannung von 10 kV erreichen die Elektronen eine Geschwindigkeit von fast 20 % der Lichtgeschwindigkeit, bei 1 MV 94 %.

Der Large Hadron Collider führt Protonen eine kinetische Energie von 6,5 TeV zu. Diese Energie ist etwa 8 tausend Mal größer als die Ruheenergie eines Protons. Bei einer Kollision zwischen entgegengesetzt beschleunigten Protonen können Teilchen mit einer entsprechend hohen Ruheenergie entstehen.

Kinetische Energie in der Quantenmechanik

In der Quantenmechanik ist der Erwartungswert E^kin der kinetischen Energie eines Teilchens der Masse m, welches durch die Wellenfunktion |ψ beschrieben wird, gegeben durch

E^kin=12mψ|P^2|ψ,

wobei P^2 das Quadrat des Impulsoperators des Teilchens ist.

Im Formalismus der Dichtefunktionaltheorie ist nur vorausgesetzt, dass die Elektronendichte bekannt ist, das heißt, dass die Wellenfunktion formal nicht bekannt sein muss. Mit der Elektronendichte ρ(r) ist das exakte Funktional der kinetischen Energie für N Elektronen unbekannt; falls jedoch im Fall N=1 ein einzelnes Elektron betrachtet wird, so kann die kinetische Energie als

Ekin[ρ]=18ρ(r)ρ(r)ρ(r)d3r

geschrieben werden, wobei Ekin[ρ] das Weizsäcker-Funktional der kinetischen Energie ist.

Siehe auch

Literatur

  • Wolfgang Nolting: Klassische Mechanik. In: Grundkurs Theoretische Physik. Bd. 1, 8. Auflage. Springer, Berlin 2008, ISBN 978-3-540-34832-0.
  • Richard P. Feynman: Feynman-Vorlesungen über Physik. Mechanik, Strahlung, Wärme 5., verbesserte Auflage, definitive Edition. Oldenbourg, München / Wien 2007, ISBN 978-3-486-58444-8 (= The Feynman Lectures on Physics, Band 1).
  • Paul A. Tipler: Physik. 3. korrigierter Nachdruck der 1. Auflage. 1994, Spektrum Akademischer Verlag, Heidelberg / Berlin 2000, ISBN 3-86025-122-8.
  • Ludwig Bergmann, Clemens Schaefer: Mechanik – Akustik – Wärme. In: Lehrbuch der Experimentalphysik. Bd. 1, 12. Auflage. Walter de Gruyter, Berlin 2008, ISBN 978-3-11-019311-4.
  • Rainer Müller: Klassische Mechanik: Vom Weitsprung zum Marsflug.. De Gruyter, 25. September 2015, ISBN 978-3-11-044530-5.
  • Dieter Meschede: Gerthsen Physik.. Springer-Verlag, 27. Februar 2015, ISBN 978-3-662-45977-5.

Weblinks

Einzelnachweise

  1. vergleiche 1,602·10−19 J = 1 eV = 1,602·10−19 C · V = 1,602·10−19 A·s·V = 1,602·10−19 W·s = 3,827·10−23 Kilokalorien kcal (Liste von Größenordnungen der Energie).
  2. István Szabó: Geschichte der mechanischen Prinzipien. Birkhäuser, S. 71.
  3. Max Jammer: Artikel Energie. In: Donald Borchert (Hrsg.): Encyclopedia of Philosophy. Thomson Gale, 2006.
  4. A. P. French: Die spezielle Relativitätstheorie – M.I.T. Einführungskurs Physik 1968, S. 19–23.