Die Bloch-Gleichungen (nach Felix Bloch, der sie 1946 erstmals veröffentlichte[1]) sind ein System von Bewegungsgleichungen für Zweiniveausysteme. Sie ermöglichen eine physikalische Deutung des paramagnetischen Resonanzeffekts in der magnetischen Kernresonanz und in der paramagnetischen Elektronenresonanz.
Die Bloch-Gleichungen gelten für Flüssigkeiten, jedoch nur eingeschränkt für Festkörper. Sie stellen Bewegungsgleichungen für die gesamte Kern- und Elektronenmagnetisierung $ {\vec {M}} $ der Probe unter dem Einfluss äußerer Magnetfelder $ H $ dar und lauten in Vektorschreibweise:
Darin beschreiben:
Später wurde gezeigt, dass diese ursprünglich für Spin-1/2-Systeme ausgelegten Bewegungsgleichungen auch jedes andere Zweiniveausystem beschreiben. Dazu werden Teile des allgemeinen „Pseudo-Spin-1/2-Systems“ mit Spinkomponenten assoziiert und die Wechselwirkung mit äußeren Feldern wie magnetische Wechselwirkungen behandelt.
In der semiklassischen Strahlungstheorie entsprechen die Spinkomponenten dem Grund- bzw. angeregten Zustand eines Zweiniveauatoms, und die Achsen der Bloch-Kugel geben Auskunft über die quantenmechanische Kohärenz ($ x $-, $ y $-Achse) bzw. die Populationsdifferenz ($ z $-Achse) des Systems. Die hierfür angepassten Gleichungen werden als optische Blochgleichungen bezeichnet.