Physikalische Kennzahl | |||||||
---|---|---|---|---|---|---|---|
Name | Fourier-Zahl | ||||||
Formelzeichen | $ {\mathit {Fo}} $ | ||||||
Dimension | dimensionslos | ||||||
Definition | $ {\mathit {Fo}}={\frac {at}{L^{2}}} $ | ||||||
| |||||||
Benannt nach | Jean Baptiste Joseph Fourier | ||||||
Anwendungsbereich | instationäre Wärmeleitung, Stoffaustauschprozesse |
Die Fourier-Zahl $ {\mathit {Fo}} $ (nach Jean Baptiste Joseph Fourier) ist eine dimensionslose Kennzahl zur Beschreibung von Problemen der instationären Wärmeleitung oder allgemeinen Stoffaustauschprozessen. Sie lässt sich als Verhältnis aus Transportrate zur Speicherungsrate interpretieren. Bei instationärer Wärmeleitung ist sie das Verhältnis der Rate, mit der fühlbare Wärme transportiert wird, zu der Rate, mit der sie aufgenommen wird.[1]
Die Fourier-Zahl für Wärmeleitung ergibt sich bei der Entdimensionalisierung der Wärmeleitungsgleichung. Als Transportkoeffizient ist die Temperaturleitfähigkeit $ a $ zu verwenden:
wobei
Sie beschreibt die Dauer eines thermischen Prozesses im Verhältnis zur Dauer des Wärmetransportes und findet daher als dimensionsloser Zeitparameter Verwendung.
Bei Stoffaustauschprozessen in der mechanischen Verfahrenstechnik wie z. B. beim Mischen wird die Fourier-Zahl zusammen mit der Bodenstein-Zahl verwendet. Als Transportkoeffizient wird statt der Temperaturleitfähigkeit (auch „Wärmediffusionskoeffizient“), der (Massen-)Diffusionskoeffizient $ D $ oder der Dissipationskoeffizient $ M $ verwendet.[2]