| Physikalische Kennzahl | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Name | Graetz-Zahl | ||||||||
| Formelzeichen | $ {\mathit {Gz}} $ | ||||||||
| Dimension | dimensionslos | ||||||||
| Definition | $ {\mathit {Gz}}={\frac {\omega D_{\mathrm {H} }^{2}}{aL}} $ | ||||||||
| |||||||||
| Benannt nach | Leo Graetz | ||||||||
| Anwendungsbereich | Erzwungene Konvektion | ||||||||
Die Graetz-Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Gz} (nach Leo Graetz) ist eine dimensionslose Kennzahl aus dem Bereich der erzwungenen Konvektion. Bei einer stationären Strömung, bei der die Verweildauer in den Rohrstücken konstant ist, ist sie der Kehrwert der Fourier-Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Fo} :
und drückt somit das Verhältnis von konvektiv übertragener zu abgeleiteter Wärme aus:
Je größer der Wert der Graetz-Zahl, desto stärker der Einfluss der Konvektion bei der Wärmeübertragung im Vergleich zur Wärmeleitung des Fluids. Sie kann somit durch die charakteristische Länge $ L $, den hydraulischen Durchmesser Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D_\mathrm H eines Rohrs (entspricht bei einem kreisförmigen Rohr dem Durchmesser), die Strömungsgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega sowie die Temperaturleitfähigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a des Fluids definiert werden:[1]
Mit Hilfe der Reynolds-Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Re} , der Prandtl-Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Pr} oder der Péclet-Zahl $ {\mathit {Pe}} $ lässt dies sich schreiben als: