Die Shockley-Queisser-Grenze, auch Shockley-Queisser-Limit, gibt in der Festkörperphysik eine Obergrenze für den Wirkungsgrad, mit dem Solarzellen Sonnenlicht in elektrische Energie umwandeln können, an. William B. Shockley und Hans-Joachim Queisser betrachteten 1961 Absorption und Remission von Photonen, um daraus die Grenze abzuleiten.[1] Das Besondere hierbei ist die rein thermodynamische Betrachtungsweise und der Idealisierung aller beteiligter Körper als Schwarze Strahlungskörper.
In einer Solarzelle wird Licht in elektrische Energie umgewandelt, indem das Licht Elektronen aus dem Valenzband in das Leitungsband anregt. Hierbei gibt es zwei entscheidende Verlustmechanismen. Zum einen ist dies der Fakt, dass ein in das Leitungsband gehobenes Elektron maximal die Bandlückenenergie als nutzbare Energie abgeben kann, unabhängig davon, wie stark es vom einfallenden Licht angeregt wurde. Darüber hinaus muss in Betracht gezogen werden, dass auch die Solarzelle selber eine bestimmten endliche Temperatur besitzt und somit durch die von ihr abgestrahlte Schwarzkörperstrahlung in Form von strahlender Rekombination Energie abgibt.
Die folgenden Überlegungen gelten für den Fall einer Zelle mit einem einzelnen pn-Übergang. Mit Mehrfachsolarzellen in denen mehrere pn-Übergänge mit verschiedenen Bandlücken kombiniert sind, können auch höhere Wirkungsgrade erreicht werden.
Entscheidend für die Energie, die man pro angeregtem Elektron gewinnen kann, ist dabei die Größe der Bandlücke $ E_{\mathrm {g} } $ des Halbleiters. Unabhängig davon, wie weit das Elektron über die untere Kante des Leitungsbandes angeregt wird, erhält man pro Elektron maximal die Energie der Bandlücke als elektrische Energie. Der Rest geht in thermischer Relaxation als Phononen an den Halbleiter verloren. Bei der elektrischen Leistung, die man aus allen angeregten Elektronen gewinnt, muss man berücksichtigen, dass bei einer kleinen Bandlücke mehr Elektronen erzeugt werden. Bei einer großen Bandlücke hat jedes einzelne Elektron dafür mehr Energie. Es muss daher ein Kompromiss aus folgenden Grenzfällen gefunden werden:
Die Energie in der elektromagnetischen (Sonnen-)Strahlung ist aus der Energie eines einzelnen Photons $ h\nu $ und der gesamten Anzahl der Photonen $ f(\nu ) $ der Frequenz $ \nu $, d. h. dem Spektrum, gegeben.
Da nur die Photonen, deren Frequenz höher als $ E_{\mathrm {g} }/h $ ist, absorbiert werden und jedes ein Elektron erzeugt, das nach seinen Relaxationsprozessen eine Energie von $ E_{\mathrm {g} } $ besitzt, ergibt sich die elektrische Energie der Elektronen insgesamt zu
Der hieraus resultierende Wirkungsgrad aus dem Verhältnis von $ E_{\mathrm {Elektronen} } $ zu $ E_{\mathrm {Strahlung} } $wird „ultimatives Wirkungsgradlimit“ genannt und beschreibt den maximalen Wirkungsgrad einer Solarzelle bei 0 K, die somit keine eigene Strahlung emittiert. Der Wert hängt entscheidend von der Bandlücke $ E_{\mathrm {g} } $ und dem Spektrum $ f(\nu ) $ ab. Die nebenstehende orange Kurve beschreibt den Verlauf des ultimativen Limits als Funktion der Bandlücke des Halbleiters. Hierfür wurde kein Sonnenspektrum benutzt, sondern das Schwarzkörperspektrum eines 6000 K heißen Körpers, was der Oberflächentemperatur der Sonne entspricht. Das Maximum von ca. 44 % ist bei einer Bandlücke von ca. 1,1 eV zu finden.[1]
Da die Solarzelle bei einer endlichen Temperatur betrieben wird, gibt sie selbst Schwarzkörperstrahlung an die Umgebung ab. Üblich für einen schwarzen Strahler ist, dass dieser dieselbe Strahlung aufnimmt, wie er auch abgibt, sofern der Strahler selbst und seine Umgebung dieselbe Temperatur haben, wie dies auch für die Solarzelle in erster Näherung der Fall ist. Allerdings liegt aufgrund der anliegenden Spannung in der Solarzelle deren Strahlungsleistung weit über der eines herkömmlichen schwarzen Strahlers (und somit über der der Umgebung), da mit steigender Spannung exponentiell mehr freie Ladungsträger vorhanden sind, die rekombinieren und somit zum charakteristischen Schwarzkörperspektrum beitragen können. Diese intrinsische strahlende Rekombination der Elektronen geschieht jedoch nur bei Energien oberhalb der Bandlücke, da Übergänge unterhalb der Bandlücke aufgrund der nicht vorhandenen elektronischen Zustände nicht möglich sind.
Um nun den theoretisch maximalen Wirkungsgrad einer Solarzelle bei endlicher Temperatur zu finden, müssen alle beschriebenen Effekte überlagert betrachtet werden. In der nebenstehenden Skizze sind alle beteiligten Strahlungen mit deren Quellen und Empfängern dargestellt.
Um nun alle Strahlungen miteinander ins Verhältnis zu setzen und auf zu addieren, werden alle drei in einen Plot (siehe rechts) gezeichnet. Hierbei ist zu beachten, dass die ausgehende Strahlung der Solarzelle noch mit dem Faktor 2 multipliziert wurde, da Strahlung auf der Vorder- und Rückseite ausgestrahlt werden kann. Bei beiden eingehenden Strahlungen fällt dieser Faktor weg, da die Solarzelle nur von vorne ankommende Strahlung aufnehmen kann. (Ausnahme hierfür sind bifaziale Solarzellen)
Nun wird die bestmögliche Bandlücke $ E_{\mathrm {g} } $ gesucht, da jeder einzelne der drei Prozesse durch die entsprechende Wellenlänge $ \lambda _{\text{g}}={\frac {hc}{E_{\text{g}}}} $ beschränkt ist. In nebenstehendem Plot ist diese Wellenlänge als schwarze Vertikale gekennzeichnet. Oberhalb dieser Wellenlänge und somit unterhalb dieser Energie kann weder eine elektronische Anregung (Strahlungsaufnahme) noch eine elektronische Emission (Strahlungsabgabe) stattfinden. (siehe Bändermodell) Es wird nun also diejenige Bandlücke gesucht, bei der die Einträge (grün schraffiert) der Sonne und der Umgebung (vernachlässigbar klein gegenüber der Sonne) maximal groß gegenüber der Strahlungsabgabe der Solarzelle (rot schraffiert) ist.
Die Abhängigkeit des Wirkungsgrades ist in oben stehender Skizze in blau aufgetragen. Die Abweichung zur ersten Skizze kommt aus dem Umstand, dass hierfür statt des exakten Sonnenspektrums ein idealisiertes Schwarzkörperspektrum bei 6000 K als Strahlungsfunktion $ f(\nu ) $ angenommen wurde. Für eine Beleuchtung unter irdischem, unkonzentriertem Sonnenlicht (Sonnenspektrum AM 1,5; Öffnungswinkel 0,5°) ergibt sich ein maximaler Wirkungsgrad von etwa 33,2 % bei einer Bandlücke von 1,34 eV.[2] Wird das Licht mit einer Linse maximal auf die Solarzelle fokussiert (entspricht 46.200 Sonnen), steigt der maximale Wirkungsgrad auf 41 % bei einer Bandlücke von 1,1 eV.[3]