Die quantenmechanische Wahrscheinlichkeitsstromdichte (genauer: Aufenthaltswahrscheinlichkeitsstromdichte) ist eine Stromdichte, die im Rahmen der quantenmechanischen Kontinuitätsgleichung mit der quantenmechanischen Aufenthaltswahrscheinlichkeitsdichte assoziiert ist. Sie wird durch die Wellenfunktion
In physikalischen Feldtheorien treten Erhaltungsgrößen als Integrale über bestimmte Dichten auf. Solche Dichten, die zu den Erhaltungsgrößen gehören, genügen dann Kontinuitätsgleichungen, die eine spezielle Form einer Bilanzgleichung sind.
Allgemein enthalten Kontinuitätsgleichungen eine Dichte
oder in integraler Formulierung mithilfe des Gaußschen Integralsatzes:
Anschauliche Bedeutung erfahren die Kontinuitätsgleichungen durch die integrale Formulierung, da die zeitliche Änderung der Dichte innerhalb eines Volumenelements gleich dem Strom über die Grenzen des Volumenelements hinein ist (
Da in der Kontinuitätsgleichung nur die Divergenz der Stromdichte auftritt, kann zu dieser stets ein Term proportional zur Rotation einer beliebigen vektorwertigen (hinreichend glatten) Funktion
In der Quantenmechanik ist, wie auch in der statistischen Mechanik, die Aufenthaltswahrscheinlichkeit eine Erhaltungsgröße. Diese Wahrscheinlichkeit, wenn man den gesamten Raum betrachtet, ist gleich Eins: das einzelne Teilchen muss irgendwo im Raum anzutreffen sein. In der Quantenmechanik ist die Aufenthaltswahrscheinlichkeitsdichte durch das Betragsquadrat der Wellenfunktion
Da die Wellenfunktion der Quantenmechanik eine vollständige Beschreibung des physikalischen Zustandes des Systems darstellt, ist zunächst aber unklar, wie die zugehörige Stromdichte der Wahrscheinlichkeitsdichte aussehen könnte, da man anders als in der Kontinuumsmechanik a priori kein zusätzliches Geschwindigkeitsfeld gegeben hat. Die Stromdichte muss vielmehr eine Funktion der Wellenfunktion sein.
Die Wahrscheinlichkeitsdichte kann mit Hilfe der Schrödingergleichung umformuliert werden:
wobei
bringen kann. Aus einem Vergleich mit der Kontinuitätsgleichung ergibt sich die folgende Form der Wahrscheinlichkeitsstromdichte:
wie am Anfang des Artikels beschrieben.
Alternative Formulierungen:
wobei
Die Wellenfunktion im äußeren elektromagnetischen Feld gehorcht der Pauli-Gleichung. Dabei werden folgende Ersetzungen in der Schrödinger-Gleichung durchgeführt:
Dadurch ergibt sich eine mögliche Wahrscheinlichkeitsstromdichte zu
Diese Wahrscheinlichkeitsstromdichte ist aufgrund der Ersetzung des kanonischen durch den kinetischen Impuls invariant unter den Eichtransformationen
mit einer beliebigen reellen Funktion
Es stellt sich jedoch heraus, dass sich zu dieser naiven Wahrscheinlichkeitsstromdichte ein Term proportional zu