imported>Ra-raisch |
imported>Crazy1880 K (Vorlagen-fix (Format)) |
||
Zeile 1: | Zeile 1: | ||
'''Hyperpolarisierbarkeit''' ist eine Eigenschaft von [[Molekül]]en, die eine große Bedeutung für die [[Nichtlineare Optik]] hat. Dabei sind die [[Polarisation (Elektrizität)|induzierten Dipolmomente]] nicht mehr proportional zur [[Elektrische Feldstärke|elektrischen Feldstärke]] der einfallenden Lichtwelle | '''Hyperpolarisierbarkeit''' ist eine Eigenschaft von [[Molekül]]en, die eine große Bedeutung für die [[Nichtlineare Optik]] hat. Dabei sind die [[Polarisation (Elektrizität)|induzierten Dipolmomente]] nicht mehr proportional zur [[Elektrische Feldstärke|elektrischen Feldstärke]] der einfallenden Lichtwelle. | ||
== Prinzip == | == Prinzip == | ||
[[Datei:P-Nitroanilin.svg|mini|hochkant=0.4|Nicht-centrosymmetrisches [[Nitroaniline|''p''-Nitroanilin]] als Beispiel für ein Molekül mit großer Hyperpolarisierbarkeit.<ref>{{Literatur | Autor= A. Volkov, C. Gatti, Y. Abramov, P. Coppens| Titel= Evaluation of net atomic charges and atomic and molecular electrostatic moments through topological analysis of the experimental charge density| Sammelwerk= [[Acta Crystallographica|Acta Crystallographica Section A]]| Band= 56| Nummer= 3| | [[Datei:P-Nitroanilin.svg|mini|hochkant=0.4|Nicht-centrosymmetrisches [[Nitroaniline|''p''-Nitroanilin]] als Beispiel für ein Molekül mit großer Hyperpolarisierbarkeit.<ref>{{Literatur |Autor=A. Volkov, C. Gatti, Y. Abramov, P. Coppens |Titel=Evaluation of net atomic charges and atomic and molecular electrostatic moments through topological analysis of the experimental charge density |Sammelwerk=[[Acta Crystallographica|Acta Crystallographica Section A]] |Band=56 |Nummer=3 |Datum=2000 |Seiten=252–258 |DOI=10.1107/S0108767300001628}}</ref> ]] | ||
In einem makroskopischen System ist die [[Polarisation (Elektrizität)|induzierte Polarisation]] <math>P</math> eine Funktion der [[Elektrische Suszeptibilität|elektrischen Suszeptibilität]] <math>\chi</math> und des [[Elektrisches Feld|elektrischen Felds]] <math>E</math>: | In einem makroskopischen System ist die [[Polarisation (Elektrizität)|induzierte Polarisation]] <math>P</math> eine Funktion der [[Elektrische Suszeptibilität|elektrischen Suszeptibilität]] <math>\chi</math> und des [[Elektrisches Feld|elektrischen Felds]] <math>E</math>: | ||
Zeile 22: | Zeile 22: | ||
Als Prototyp gelten Donor-Akzeptor-Moleküle wie ''p''-Nitroanilin, weil sich hier die Elektronendichte durch das angelegte symmetrische Feld leicht asymmetrisch verschieben lässt. Eine noch größere Hyperpolarisierbarkeit findet man in ausgedehnten <math>\pi</math>-Systemen, wie sie in organischen Farbstoffen vorkommen. | Als Prototyp gelten Donor-Akzeptor-Moleküle wie ''p''-Nitroanilin, weil sich hier die Elektronendichte durch das angelegte symmetrische Feld leicht asymmetrisch verschieben lässt. Eine noch größere Hyperpolarisierbarkeit findet man in ausgedehnten <math>\pi</math>-Systemen, wie sie in organischen Farbstoffen vorkommen. | ||
In [[CODATA]] | In [[CODATA]] 2018 werden [[atomare Einheiten]] der ersten und zweiten Hyperpolarisierbarkeit festgelegt: | ||
:<math>\beta_{au} = e^3 a_0^3 / | :<math>\beta_\mathrm{au} = e^3 a_0^3 / E_\mathrm h^2 = 3{,}206\,361\,306\,1(15)\cdot 10^{-53}\,\mathrm{C^3\,m^3/J^2}</math> | ||
:<math>\gamma_{au} = e^4 a_0^4 / | :<math>\gamma_\mathrm{au} = e^4 a_0^4 / E_\mathrm h^3 = 6{,}235\,379\,990\,5(38)\cdot 10^{-65}\,\mathrm{C^4\,m^4/J^3}</math> | ||
*mit ''a<sub>0</sub> | *mit ''a''<sub>0</sub> = [[Bohrscher Radius]], ''e'' = [[Elementarladung]] des Elektrons und ''E''<sub>h</sub> = [[Hartree-Energie]]. | ||
== Technik == | == Technik == | ||
Erste exakte Bestimmungen der Hyperpolarisierbarkeit erfolgten durch [[A. David Buckingham]] mit Hilfes des [[Kerr-Effekt]]s.<ref>{{Literatur | Autor= A. D. Buckingham, P. Hibbard| Titel= Polarizability and Hyperpolarizability of the Helium Atom| Sammelwerk= Symposia of the Faraday Society | Band= 2| Nummer= | | Erste exakte Bestimmungen der Hyperpolarisierbarkeit erfolgten durch [[A. David Buckingham]] mit Hilfes des [[Kerr-Effekt]]s.<ref>{{Literatur |Autor=A. D. Buckingham, P. Hibbard |Titel=Polarizability and Hyperpolarizability of the Helium Atom |Sammelwerk=Symposia of the Faraday Society |Band=2 |Nummer= |Datum=1968 |Seiten=41–47 |DOI=10.1039/SF9680200041}}</ref> Heute vielfach verwendete Methoden sind Messungen der [[Hyper-Rayleigh-Streuung]] (HRS) | ||
und der [[Feldinduzierte Frequenzverdopplung|feldinduzierten Frequenzverdopplung]] ({{enS|electric-field-induced second-harmonic generation}}, EFISH).<ref>{{Literatur | Autor= P. Kaatz, E. A. Donley, D. P. Shelton| Titel= A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements| Sammelwerk= The Journal of Chemical Physics| Band= 108| Nummer= | | und der [[Feldinduzierte Frequenzverdopplung|feldinduzierten Frequenzverdopplung]] ({{enS|electric-field-induced second-harmonic generation}}, EFISH).<ref>{{Literatur |Autor=P. Kaatz, E. A. Donley, D. P. Shelton |Titel=A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements |Sammelwerk=The Journal of Chemical Physics |Band=108 |Nummer= |Datum=1998 |Seiten=849–856 |Online=[http://www.physics.unlv.edu/~shelton/pdf_mypapers/JChemPhys_108_849_1998.pdf Online] |Format=PDF |KBytes= |DOI=10.1063/1.475448}}</ref> Computerberechnungen auf Basis der [[Dichtefunktionaltheorie (Quantenphysik)|Dichtefunktionaltheorie]] und der [[Hartree-Fock-Methode]] verwenden häufig den SOS-Ansatz („{{lang|en|''sum over states''}}“).<ref>{{Literatur |Autor=J. P. Coe, M. J. Paterson |Titel=Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction |Sammelwerk=The Journal of Chemical Physics |Band=141 |Nummer=12 |Datum=2014 |Seiten=124118 |arXiv=1409.7276 |DOI=10.1063/1.4896229}}</ref> | ||
== Literatur == | == Literatur == | ||
* {{Gold Book|hyperpolarizability (of nth order)|HT07053 |Version=2.3.3}} | * {{Gold Book|hyperpolarizability (of nth order)|HT07053 |Version=2.3.3}} | ||
* {{Literatur | Autor= D. R. Kanis, M. A. Ratner, T. J. Marks| Titel= Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects| Sammelwerk= [[Chemical Reviews]]| Band= 94| Nummer= 1| | * {{Literatur |Autor=D. R. Kanis, M. A. Ratner, T. J. Marks |Titel=Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects |Sammelwerk=[[Chemical Reviews]] |Band=94 |Nummer=1 |Datum=1994 |Seiten=195–242 |Sprache=en |DOI=10.1021/cr00025a007}} | ||
== Einzelnachweise == | == Einzelnachweise == |
Hyperpolarisierbarkeit ist eine Eigenschaft von Molekülen, die eine große Bedeutung für die Nichtlineare Optik hat. Dabei sind die induzierten Dipolmomente nicht mehr proportional zur elektrischen Feldstärke der einfallenden Lichtwelle.
In einem makroskopischen System ist die induzierte Polarisation $ P $ eine Funktion der elektrischen Suszeptibilität $ \chi $ und des elektrischen Felds $ E $:
Bei einem starken elektrischen Feld, wie es von einem Laser erzeugt wird, muss die induzierte Polarisation als Potenzreihe wiedergegeben werden:
wobei $ \chi ^{(2)} $ und $ \chi ^{(3)} $ die nichtlinearen Effekte zweiter und dritter Ordnung beschreiben. Nur wenn das Material in einer nicht-centrosymmetrischen Raumgruppe kristallisiert, ist der Term zweiter Ordnung ungleich Null.
Wenn man dieses makroskopische Konzept auf das mikroskopische (molekulare) Niveau überträgt, dann erhält man eine ähnliche Potenzreihe für die Polarisierbarkeit:
wobei die Variablen $ i,j,k,l $ das molekulare Achsensystem aufspannen. $ \beta $ ist die Hyperpolarisierbarkeit zweiter Ordnung. Sie ist nur dann ungleich Null, wenn das Molekül nicht-centrosymmetrisch ist. Sowohl bei der linearen Polarisierbarkeit $ \alpha $ als auch bei den Hyperpolarisierbarkeiten $ \beta $ und $ \gamma $ handelt es sich um frequenzabhängige Tensoren.
Als Prototyp gelten Donor-Akzeptor-Moleküle wie p-Nitroanilin, weil sich hier die Elektronendichte durch das angelegte symmetrische Feld leicht asymmetrisch verschieben lässt. Eine noch größere Hyperpolarisierbarkeit findet man in ausgedehnten $ \pi $-Systemen, wie sie in organischen Farbstoffen vorkommen.
In CODATA 2018 werden atomare Einheiten der ersten und zweiten Hyperpolarisierbarkeit festgelegt:
Erste exakte Bestimmungen der Hyperpolarisierbarkeit erfolgten durch A. David Buckingham mit Hilfes des Kerr-Effekts.[2] Heute vielfach verwendete Methoden sind Messungen der Hyper-Rayleigh-Streuung (HRS) und der feldinduzierten Frequenzverdopplung (englisch electric-field-induced second-harmonic generation, EFISH).[3] Computerberechnungen auf Basis der Dichtefunktionaltheorie und der Hartree-Fock-Methode verwenden häufig den SOS-Ansatz („{{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)“).[4]