imported>Aka K (Bindestrich mitverlinkt) |
2a00:6020:1bfd:df00:6c11:bb03:d9f2:8c2e (Diskussion) (Es wurde eine Ergänzung vorgenommen die den Wirkungsquerschnitt vielleicht etwas besser beschreibt.) |
||
Zeile 1: | Zeile 1: | ||
Der '''Wirkungsquerschnitt''' <math>\sigma</math> ( | Der '''Wirkungsquerschnitt''' <math>\sigma</math> ([[Sigma]]) ist in der [[Molekülphysik|Molekül-]], [[Atomphysik|Atom-]], [[Kernphysik|Kern-]] und [[Teilchenphysik]] ein Maß für die [[Wahrscheinlichkeit]] einer Wechselwirkung zwischen einer einfallenden [[Welle]]n<nowiki/>strahlung oder einem einfallenden [[Teilchen]] („Projektil“) und einem anderen Teilchen ([[Streukörper]] oder [[Target (Physik)|''Target'']]). Beispiele für eine solche Wechselwirkung wären [[Absorption (Physik)|Absorption]], [[Streuung (Physik)|Streuung]] oder eine [[Kernreaktion|Reaktion]]. | ||
Der Wirkungsquerschnitt hat die [[Dimension (Physik)|Dimension]] Fläche. Er wird meist in folgenden [[Maßeinheit|Einheiten]] angegeben: | Der Wirkungsquerschnitt hat die [[Dimension (Physik)|Dimension]] Fläche. Er wird meist in folgenden [[Maßeinheit|Einheiten]] angegeben: | ||
Zeile 17: | Zeile 17: | ||
* '''Extinktionsquerschnitt''' für Schwächung oder Energieentnahme, Summe von Streu- und Absorptionsquerschnitt<ref name="vanDeHulst" /> | * '''Extinktionsquerschnitt''' für Schwächung oder Energieentnahme, Summe von Streu- und Absorptionsquerschnitt<ref name="vanDeHulst" /> | ||
* '''Einfangquerschnitt''' für eine bestimmte Absorption, nämlich den [[Neutroneneinfang]] (die (n,<math>\gamma</math>)-Kernreaktion) | * '''Einfangquerschnitt''' für eine bestimmte Absorption, nämlich den [[Neutroneneinfang]] (die (n,<math>\gamma</math>)-Kernreaktion) | ||
* '''Neutronenquerschnitt''' für (beliebige) Wechselwirkung des Atomkerns mit einem freien Neutron | |||
* '''Reaktionsquerschnitt''' für die [[chemische Reaktion]], die durch den [[Stoß (Physik)|Stoß]] zweier Atome oder Moleküle ausgelöst wird | * '''Reaktionsquerschnitt''' für die [[chemische Reaktion]], die durch den [[Stoß (Physik)|Stoß]] zweier Atome oder Moleküle ausgelöst wird | ||
* '''Elastischer Wirkungsquerschnitt''' (oft auch nur „elastischer Querschnitt“) für elastischen Stoß, also einen Stoß, bei dem die gesamte [[kinetische Energie]] erhalten bleibt | * '''Elastischer Wirkungsquerschnitt''' (oft auch nur „elastischer Querschnitt“) für elastischen Stoß, also einen Stoß, bei dem die gesamte [[kinetische Energie]] erhalten bleibt | ||
* '''Inelastischer Wirkungsquerschnitt''' („inelastischer Querschnitt“) für inelastischen Stoß, also einen Stoß, bei dem | * '''Inelastischer Wirkungsquerschnitt''' („inelastischer Querschnitt“) für inelastischen Stoß, also einen Stoß, bei dem kinetische Energie in andere Energieformen übergeht, z. B. wird ein Teilchen [[Angeregter Zustand|angeregt]] (d. h. in einen Zustand höherer Energie versetzt) oder es werden neue Teilchen erzeugt | ||
* '''Ionisationsquerschnitt''' für die [[Ionisation]] des getroffenen Atoms | * '''Ionisationsquerschnitt''' für die [[Ionisation]] des getroffenen Atoms | ||
* '''Spaltquerschnitt''' für die [[Kernspaltung|induzierte Kernspaltung]] | * '''Spaltquerschnitt''' für die [[Kernspaltung|induzierte Kernspaltung]] | ||
Zeile 26: | Zeile 27: | ||
== Definition == | == Definition == | ||
[[Datei:WirkungsquerschnittSkizze.png|250px|mini|Die Trefferwahrscheinlichkeit <math>w</math> ist die Gesamtfläche der <math>N_T</math> Targetteilchen, also <math>\sigma\cdot N_T</math> (rot), geteilt durch die Gesamtfläche des Targets (blau).]] | [[Datei:WirkungsquerschnittSkizze.png|250px|mini|Die Trefferwahrscheinlichkeit <math>w</math> ist die Gesamtfläche der <math>N_T</math> Targetteilchen, also <math>\sigma\cdot N_T</math> (rot), geteilt durch die Gesamtfläche des Targets (blau).]] | ||
Bei einem Experiment mit gleichmäßiger Bestrahlung des Targets wird dem Zielteilchen (Targetteilchen) eine Fläche σ als gedachte „Zielscheibe“ zugeordnet. Ihre Größe wird so gewählt, dass die Zahl der beobachteten Reaktionen ("Wechselwirkungen") genau durch die Anzahl der – punktförmig, also ausdehnungslos gedachten – Projektilteilchen angegeben wird, die durch diese Fläche hindurchfliegen. Diese Fläche ist der Wirkungsquerschnitt des betreffenden Targets für die betreffende Wechselwirkung bei der betreffenden Energie der Projektilteilchen. | Bei einem Experiment mit gleichmäßiger Bestrahlung des Targets wird dem Zielteilchen (Targetteilchen) eine Fläche σ als gedachte „Zielscheibe“ zugeordnet. Ihre Größe wird so gewählt, dass die Zahl der beobachteten Reaktionen ("Wechselwirkungen") genau durch die Anzahl der – punktförmig, also ausdehnungslos gedachten – Projektilteilchen angegeben wird, die durch diese Fläche hindurchfliegen. Diese Fläche ist der Wirkungsquerschnitt des betreffenden Targets für die betreffende Wechselwirkung bei der betreffenden Energie der Projektilteilchen. | ||
Die Wahrscheinlichkeit <math> | Die Wahrscheinlichkeit <math>w</math>, dass ''ein'' einfallendes Teilchen mit einem Targetteilchen wechselwirkt, errechnet sich aus | ||
:<math>w = \sigma \frac{N_T}{F} \quad \Leftrightarrow \quad \sigma = w \frac{F}{N_T}.</math> | :<math>w = \sigma \frac{N_T}{F} \quad \Leftrightarrow \quad \sigma = w \frac{F}{N_T}.</math> | ||
Zeile 46: | Zeile 47: | ||
Zur experimentellen Bestimmung eines Wirkungsquerschnitts wird <math>\,N_\text{Reaktion}</math> durch geeignete [[Teilchendetektor|Detektor]]en gemessen, während <math>N_{T} \,</math>, <math>N \,</math> und <math>F \,</math> aus Aufbau und Durchführung des Experiments bekannt sind. | Zur experimentellen Bestimmung eines Wirkungsquerschnitts wird <math>\,N_\text{Reaktion}</math> durch geeignete [[Teilchendetektor|Detektor]]en gemessen, während <math>N_{T} \,</math>, <math>N \,</math> und <math>F \,</math> aus Aufbau und Durchführung des Experiments bekannt sind. | ||
In der theoretischen Herleitung (z. B. in der [[Quantenmechanik|quantenmechanischen]] [[Streutheorie]]) wird die Formel häufig noch durch die Zeit dividiert, also die ''Reaktionsrate'' <math>W</math> | In der theoretischen Herleitung (z. B. in der [[Quantenmechanik|quantenmechanischen]] [[Streutheorie]]) wird die Formel häufig noch durch die Zeit dividiert, also die ''Reaktionsrate'' <math>W</math> ([[Reaktorphysik]]: ''[[Kernreaktionsrate]]'' <math>R</math>): | ||
:<math>W = \frac{N_\text{Reaktion}}{t} = \sigma N_T \, j = \sigma L</math> | :<math>W = \frac{N_\text{Reaktion}}{t} = \sigma N_T \, j = \sigma L</math> | ||
Zeile 61: | Zeile 62: | ||
Hierbei ist <math>\rho_T</math> die Teilchendichte des Targetmaterials, also die Anzahl der Targetteilchen pro Volumeneinheit: | Hierbei ist <math>\rho_T</math> die Teilchendichte des Targetmaterials, also die Anzahl der Targetteilchen pro Volumeneinheit: | ||
::<math>\rho_T = \frac{ | ::<math>\rho_T = \frac{N_\text{A} \cdot \rho}{M}</math> | ||
mit | mit | ||
* <math> | * <math>N_\text{A}</math> der [[Avogadrokonstante]], | ||
* <math>\rho</math> der [[Dichte|Massendichte]] und | * <math>\rho</math> der [[Dichte|Massendichte]] und | ||
* <math>M</math> der [[Molare Masse|Molaren Masse]]. | * <math>M</math> der [[Molare Masse|Molaren Masse]]. | ||
Zeile 92: | Zeile 93: | ||
== Totaler Wirkungsquerschnitt == | == Totaler Wirkungsquerschnitt == | ||
[[Datei:U235Xs01.png |mini |Wirkungsquerschnitte für sechs Kernreaktionen von Neutron und Atomkern <sup>235</sup>U und ihre Summe, der totale Wirkungsquerschnitt, als Funktion der kinetischen Energie der Neutronen. In der Legende steht teilweise z statt des üblichen Symbols n für Neutron (Datenquelle: JEFF, graphische Darstellung: Kerndatenbetrachter JANIS 4[http://www.oecd-nea.org/janis/])]] | |||
Die Bezeichnung „totaler Wirkungsquerschnitt“ wird in zwei Bedeutungen verwendet: | Die Bezeichnung „totaler Wirkungsquerschnitt“ wird in zwei Bedeutungen verwendet: | ||
# Manchmal ist damit der Wirkungsquerschnitt für das Eintreten irgendeines von mehreren möglichen Vorgängen gemeint, z. B. Absorption oder Streuung des einfallenden Teilchens. Für Prozesse, die sich gegenseitig ausschließen, ist der totale Wirkungsquerschnitt die Summe der Einzel-Wirkungsquerschnitte. Er wird beispielsweise dann benötigt, wenn es nur um die Abschwächung des einfallenden Teilchenstroms oder um die [[mittlere freie Weglänge]] geht. | # Manchmal ist damit der Wirkungsquerschnitt für das Eintreten irgendeines von mehreren möglichen Vorgängen gemeint, z. B. Absorption oder Streuung des einfallenden Teilchens. Für Prozesse, die sich gegenseitig ausschließen, ist der totale Wirkungsquerschnitt die Summe der Einzel-Wirkungsquerschnitte. Die Abbildung zeigt die Wirkungsquerschnitte der sechs im Energieintervall (10<sup>−11</sup> bis 20) MeV dominierenden Typen von Kernreaktionen von Neutron und Atomkern <sup>235</sup>U und die Summe dieser Wirkungsquerschnitte, den totalen Wirkungsquerschnitt. Er wird beispielsweise dann benötigt, wenn es nur um die Abschwächung des einfallenden Teilchenstroms oder um die [[mittlere freie Weglänge]] geht. | ||
# Manchmal wird „Totaler Wirkungsquerschnitt“ auch nur im Sinne des oben definierten Wirkungsquerschnitts für einen bestimmten Vorgang verwendet, um ihn vom ''differentiellen'' Wirkungsquerschnitt <math>\frac{d\sigma}{d\Omega}</math> (s. unten) zu unterscheiden; eine bessere Bezeichnung ist in diesem Fall „Integraler Wirkungsquerschnitt“. Es gilt: | # Manchmal wird „Totaler Wirkungsquerschnitt“ auch nur im Sinne des oben definierten Wirkungsquerschnitts für einen bestimmten Vorgang verwendet, um ihn vom ''differentiellen'' Wirkungsquerschnitt <math>\frac{d\sigma}{d\Omega}</math> (s. unten) zu unterscheiden; eine bessere Bezeichnung ist in diesem Fall „Integraler Wirkungsquerschnitt“. Es gilt: | ||
Zeile 108: | Zeile 111: | ||
* <math>\,j_\text{sek.}(\Omega)</math> die Stromdichte der in Richtung Ω auslaufenden Sekundärstrahlung bei Anwesenheit eines einzigen Targetteilchens (<math>\,N_T = 1</math>, vgl. [[#Definition|Definition]]), gegeben in ''Teilchen pro Raumwinkel-Einheit und Zeiteinheit'' | * <math>\,j_\text{sek.}(\Omega)</math> die Stromdichte der in Richtung Ω auslaufenden Sekundärstrahlung bei Anwesenheit eines einzigen Targetteilchens (<math>\,N_T = 1</math>, vgl. [[#Definition|Definition]]), gegeben in ''Teilchen pro Raumwinkel-Einheit und Zeiteinheit'' | ||
* <math>\,j_\text{prim.}</math> die Stromdichte der (parallel einlaufenden) Primärstrahlung in Teilchen pro Flächen-Einheit und Zeiteinheit. | * <math>\,j_\text{prim.}</math> die Stromdichte der (parallel einlaufenden) Primärstrahlung in Teilchen pro Flächen-Einheit und Zeiteinheit. | ||
Daher hat <math>\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}</math> die Dimension ''Fläche pro Raumwinkel'' und als Maßeinheit z. B. [[Barn|Millibarn]] pro [[Steradiant]]. (Physikalisch gesehen ist der Raumwinkel | Daher hat <math>\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}</math> die Dimension ''Fläche pro Raumwinkel'' und als Maßeinheit z. B. [[Barn|Millibarn]] pro [[Steradiant]]. (Physikalisch gesehen ist der Raumwinkel eine [[Größe der Dimension Zahl]] und der differentielle Wirkungsquerschnitt <math>\frac{\mathrm{d}\sigma}{\mathrm {d}\Omega}</math> daher von derselben Dimension ''Fläche'' wie der Wirkungsquerschnitt <math>\sigma</math> selbst.) | ||
Um die richtige Trefferfläche für die Erzeugung der Sekundärstrahlung in Richtung <math>\Omega</math> zu erhalten, betrachtet man die gesamte Sekundärstrahlung in ein kleines Raumwinkelelement <math>\Delta\Omega</math> hinein. Sie ist in erster Näherung gegeben durch | Um die richtige Trefferfläche für die Erzeugung der Sekundärstrahlung in Richtung <math>\Omega</math> zu erhalten, betrachtet man die gesamte Sekundärstrahlung in ein kleines Raumwinkelelement <math>\Delta\Omega</math> hinein. Sie ist in erster Näherung gegeben durch | ||
Zeile 129: | Zeile 132: | ||
* zusätzlich von der [[Raumwinkel|Richtung]] <math>\Omega</math>, die durch zwei Winkel angegeben werden kann. Meist interessiert nur der Ablenkwinkel relativ zur Richtung des Primärstrahls; dann heißt der differentielle Wirkungsquerschnitt auch kurz '''Winkelverteilung'''. | * zusätzlich von der [[Raumwinkel|Richtung]] <math>\Omega</math>, die durch zwei Winkel angegeben werden kann. Meist interessiert nur der Ablenkwinkel relativ zur Richtung des Primärstrahls; dann heißt der differentielle Wirkungsquerschnitt auch kurz '''Winkelverteilung'''. | ||
Mit der Bezeichnung | Mit der Bezeichnung „differentieller Wirkungsquerschnitt“ ohne weiteren Zusatz ist fast immer <math>\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}</math> gemeint. Weitere differentielle Wirkungsquerschnitte sind: | ||
=== Sekundärenergieverteilung === | === Sekundärenergieverteilung === | ||
Zeile 149: | Zeile 152: | ||
Bei ''Wellen''phänomenen ist die geometrische Interpretation ''nicht'' möglich. Auch in der Quantenmechanik können prinzipiell ''keine'' [[deterministisch]]en Aussagen über einzelne Projektil- oder Targetteilchen gemacht werden. | Bei ''Wellen''phänomenen ist die geometrische Interpretation ''nicht'' möglich. Auch in der Quantenmechanik können prinzipiell ''keine'' [[deterministisch]]en Aussagen über einzelne Projektil- oder Targetteilchen gemacht werden. | ||
== Makroskopischer | == Makroskopischer Wirkungsquerschnitt == | ||
In der Physik der Kernreaktoren wird neben dem oben definierten ''mikroskopischen'' (d. h. auf 1 Targetteilchen, meist 1 Atom bezogenen) Wirkungsquerschnitt auch der ''makroskopische'', auf 1 cm<sup>3</sup> Material bezogene Wirkungsquerschnitt mit dem Formelzeichen <math>\Sigma</math> (großes Sigma) verwendet. Er ergibt sich aus dem mikroskopischen Wirkungsquerschnitt durch Multiplikation mit der [[Teilchendichte|Atomzahldichte]], also der Zahl der jeweiligen Atome pro cm<sup>3</sup>. Die übliche Einheit des makroskopischen Wirkungsquerschnitts ist cm<sup>2</sup>/cm<sup>3</sup> = 1/cm. In diesem Anwendungsbereich sind im Allgemeinen die Energien der beiden Reaktionspartner nicht einheitlich festgelegt, | In der Physik der Kernreaktoren wird neben dem oben definierten ''mikroskopischen'' (d. h. auf 1 Targetteilchen, meist 1 Atom bezogenen) Wirkungsquerschnitt auch der ''makroskopische'', auf 1 cm<sup>3</sup> Material bezogene Wirkungsquerschnitt mit dem Formelzeichen <math>\Sigma</math> (großes Sigma) verwendet. Er ergibt sich aus dem mikroskopischen Wirkungsquerschnitt durch Multiplikation mit der [[Teilchendichte|Atomzahldichte]], also der Zahl der jeweiligen Atome pro cm<sup>3</sup>. Damit entspricht er dem Kehrwert der oben eingeführten mittleren freien Weglänge. Die übliche Einheit des makroskopischen Wirkungsquerschnitts ist cm<sup>2</sup>/cm<sup>3</sup> = 1/cm. In diesem Anwendungsbereich sind im Allgemeinen die Energien der beiden Reaktionspartner nicht einheitlich festgelegt, so dass die kinetische Energie in ihrem Schwerpunktsystem im Rahmen einer bestimmten Häufigkeitsverteilung variiert. Die interessierende Größe ist dann der mit dieser Verteilung ermittelte Durchschnittswert der makroskopischen Wirkungsquerschnitte. Dieser kann z. B. temperaturabhängig sein. | ||
== Temperaturabhängiger Wirkungsquerschnitt == | |||
Im thermodynamischen Gleichgewicht besitzen die Atome und Moleküle der Materie bei einer gegebenen Temperatur eine im Vergleich zu den Teilchen geringe kinetische Energie. In einem [[Thermischer Reaktor |thermischen Reaktor]] erreicht ein Neutron nach sehr kurzer Zeit (in der Größenordnung von Mikrosekunden), vor allem durch elastische Streuung am Proton des Wassermoleküls, die „Temperatur“ des Mediums. Dann wird der Wirkungsquerschnitt nicht mehr durch die Geschwindigkeit des Teilchens allein, sondern von der Relativgeschwindigkeit von Atomkern und Teilchen abhängen. Der Wirkungsquerschnitt wird '''temperaturabhängig''' und man spricht von einem ''temperaturabhängigen Wirkungsquerschnitt'' oder einem ''temperaturabhängigen makroskopischen Wirkungsquerschnitt''. | |||
== Wirkungsquerschnitt und Fermis Goldene Regel == | == Wirkungsquerschnitt und Fermis Goldene Regel == | ||
Zeile 171: | Zeile 177: | ||
== Siehe auch == | == Siehe auch == | ||
* [[Kernreaktionsrate]] | |||
* [[Rutherford-Streuung]] | * [[Rutherford-Streuung]] | ||
* [[Mott-Streuung]] | * [[Mott-Streuung]] | ||
* [[Rosenbluth-Formel]] | * [[Rosenbluth-Formel]] | ||
* [[Strukturfunktion]] | * [[Strukturfunktion]] | ||
== Weblinks == | == Weblinks == | ||
Zeile 195: | Zeile 201: | ||
</ref> | </ref> | ||
</references> | </references> | ||
{{Normdaten|TYP=s|GND=4190024-8}} | |||
[[Kategorie:Atomphysik]] | [[Kategorie:Atomphysik]] |
Der Wirkungsquerschnitt $ \sigma $ (Sigma) ist in der Molekül-, Atom-, Kern- und Teilchenphysik ein Maß für die Wahrscheinlichkeit einer Wechselwirkung zwischen einer einfallenden Wellenstrahlung oder einem einfallenden Teilchen („Projektil“) und einem anderen Teilchen (Streukörper oder Target). Beispiele für eine solche Wechselwirkung wären Absorption, Streuung oder eine Reaktion.
Der Wirkungsquerschnitt hat die Dimension Fläche. Er wird meist in folgenden Einheiten angegeben:
Die Vorstellung vom Wirkungsquerschnitt als einer jedem Targetteilchen zugeordneten Trefferfläche bietet ein anschauliches Maß für die „Stärke“ des jeweils betrachteten Vorgangs: Einem häufig eintretenden Vorgang entspricht ein großer Wirkungsquerschnitt, einem selten eintretenden ein kleiner Wirkungsquerschnitt. Mit anschaulichen Vorstellungen über Größe, Form und Lage des Targetteilchens stimmt diese Trefferfläche allerdings im Allgemeinen nicht überein.
Der Wirkungsquerschnitt hängt vom jeweils interessierenden Vorgang ab, von Art und kinetischer Energie des einfallenden Teilchens oder Quants und von der Art des getroffenen Teilchens, z. B. Atom, Atomkern. Die letztgenannte Abhängigkeit bedeutet, dass Wirkungsquerschnitte Materialeigenschaften sind. Beispielsweise sind zur Berechnung von Kernreaktoren oder Kernfusionsreaktoren umfangreiche Kerndatenbibliotheken erforderlich, die die Wirkungsquerschnitte der verschiedenen Materialien für einfallende Neutronen verschiedener Energien für verschiedene mögliche Streuprozesse und Kernreaktionen enthalten.
Insbesondere bei Kernreaktionen wird der Wirkungsquerschnitt, betrachtet als Funktion der Energie des einfallenden Teilchens/Quants, manchmal auch als Anregungsfunktion bezeichnet.
Je nach Art des betrachteten Vorgangs werden verschiedene Bezeichnungen für den Wirkungsquerschnitt verwendet:
Bei einem Experiment mit gleichmäßiger Bestrahlung des Targets wird dem Zielteilchen (Targetteilchen) eine Fläche σ als gedachte „Zielscheibe“ zugeordnet. Ihre Größe wird so gewählt, dass die Zahl der beobachteten Reaktionen ("Wechselwirkungen") genau durch die Anzahl der – punktförmig, also ausdehnungslos gedachten – Projektilteilchen angegeben wird, die durch diese Fläche hindurchfliegen. Diese Fläche ist der Wirkungsquerschnitt des betreffenden Targets für die betreffende Wechselwirkung bei der betreffenden Energie der Projektilteilchen.
Die Wahrscheinlichkeit $ w $, dass ein einfallendes Teilchen mit einem Targetteilchen wechselwirkt, errechnet sich aus
Darin ist
auch wird $ \sigma N_{T}\ll F\quad \Leftrightarrow \quad w\ll 1 $ vorausgesetzt, weil sich die Targetteilchen sonst gegenseitig abschatten.
Wenn insgesamt $ \,N $ Projektilteilchen einlaufen und jedes von ihnen mit der Wahrscheinlichkeit $ \,w $ eine Reaktion verursacht, dann ist die Gesamtzahl der Reaktionen gegeben durch:
Zusammen:
Zur experimentellen Bestimmung eines Wirkungsquerschnitts wird $ \,N_{\text{Reaktion}} $ durch geeignete Detektoren gemessen, während $ N_{T}\, $, $ N\, $ und $ F\, $ aus Aufbau und Durchführung des Experiments bekannt sind.
In der theoretischen Herleitung (z. B. in der quantenmechanischen Streutheorie) wird die Formel häufig noch durch die Zeit dividiert, also die Reaktionsrate $ W $ (Reaktorphysik: Kernreaktionsrate $ R $):
mit
Für eine infinitesimal dünne Targetschicht der Dicke $ \mathrm {d} x $ erhält man aus der obigen Gleichung, wenn man für „Teilchen pro Fläche“ das Produkt „Teilchendichte $ \rho _{T} $ mal Dicke $ \mathrm {d} x $“ einsetzt:
Hierbei ist $ \rho _{T} $ die Teilchendichte des Targetmaterials, also die Anzahl der Targetteilchen pro Volumeneinheit:
mit
Löst man obige Gleichung nach $ N_{\text{Reaktion}} $ auf und setzt dies gleich $ -\mathrm {d} N $, erhält man die Differentialgleichung
Die Lösung hierfür ist
Interpretation: die wechselwirkenden Projektilteilchen $ N_{\text{Reaktion}} $ sind nicht mehr Teil des einfallenden Strahls mit der Teilchenanzahl $ N_{0} $, da sie (bei Reaktion) absorbiert oder (bei Streuung) aus ihrer ursprünglichen Bahn abgelenkt worden sind. D. h., nach dem Durchlaufen einer Targetschicht der Dicke x sind nur noch $ N(x)=N_{0}-N_{\text{Reaktion}} $ Teilchen im Strahl vorhanden.
Betrachtet man die Wechselwirkungen in einem bestimmten Volumen, so ist $ x=l $, wenn $ l $ die Länge dieses Volumens ist. Setzt man dieses ein, kann man zur Berechnung des Wirkungsquerschnitt die Gleichung umstellen:
Offenbar gilt auch
wobei $ \lambda $ die mittlere freie Weglänge ist, nach der die Intensität des einfallenden Strahls auf $ {\frac {1}{e}} $ ihres ursprünglichen Wertes abgefallen ist.
Sofern mehr als eine Art von Vorgang möglich ist, bezieht sich $ \sigma $ in dieser Gleichung auf alle zusammen, ist also der totale Wirkungsquerschnitt (siehe unten).
Die Bezeichnung „totaler Wirkungsquerschnitt“ wird in zwei Bedeutungen verwendet:
Wenn durch die Reaktion zwischen der einfallenden Primärstrahlung und dem Target eine Sekundärstrahlung entsteht (gestreute Primärstrahlung oder eine andere Art von Strahlung), wird deren Intensitätsverteilung über die Raumrichtungen $ \Omega $ beschrieben durch den differentiellen (auch differenziellen) Wirkungsquerschnitt $ {\frac {\mathrm {d} \sigma }{\mathrm {d} \Omega }}: $
Darin ist
Daher hat $ {\frac {\mathrm {d} \sigma }{\mathrm {d} \Omega }} $ die Dimension Fläche pro Raumwinkel und als Maßeinheit z. B. Millibarn pro Steradiant. (Physikalisch gesehen ist der Raumwinkel eine Größe der Dimension Zahl und der differentielle Wirkungsquerschnitt $ {\frac {\mathrm {d} \sigma }{\mathrm {d} \Omega }} $ daher von derselben Dimension Fläche wie der Wirkungsquerschnitt $ \sigma $ selbst.)
Um die richtige Trefferfläche für die Erzeugung der Sekundärstrahlung in Richtung $ \Omega $ zu erhalten, betrachtet man die gesamte Sekundärstrahlung in ein kleines Raumwinkelelement $ \Delta \Omega $ hinein. Sie ist in erster Näherung gegeben durch
Der Ausdruck auf der linken Seite entspricht genau der Reaktionsrate wie oben erwähnt (bei NT = 1), man denke sich etwa ein Experiment mit einem Detektor von genau der Größe $ \Delta \Omega $, der auf jedes ankommende Sekundärteilchen anspricht. Daher steht auf der rechten Seite vor der einlaufenden Stromdichte $ j_{\text{prim.}} $ mit dem Faktor
genau die Trefferfläche (richtig mit Dimension Fläche), die zu den in diesem Experiment beobachteten Reaktionen gehört.
Das Integral des differentiellen Wirkungsquerschnitts über alle Richtungen ist der totale (oder integrale) Wirkungsquerschnitt für den beobachteten Typ der Reaktion:
Der differentielle Wirkungsquerschnitt hängt ab
Mit der Bezeichnung „differentieller Wirkungsquerschnitt“ ohne weiteren Zusatz ist fast immer $ {\frac {\mathrm {d} \sigma }{\mathrm {d} \Omega }} $ gemeint. Weitere differentielle Wirkungsquerschnitte sind:
Seltener benötigt wird der nach der Energie $ E_{s} $ des Sekundärteilchens, also des gestreuten Teilchens oder Reaktionsproduktes, abgeleitete Wirkungsquerschnitt $ {\frac {d\sigma }{dE_{s}}} $, der die Energieverteilung der Sekundärteilchen beschreibt. Er hängt ab von der Primär- und der Sekundärenergie.
Bei komplexen Vorgängen wie etwa dem Eindringen (Transport) schneller Neutronen in dicke Materieschichten, wo ein Neutron an verschiedenen Streuprozessen und Kernreaktionen nacheinander teilnehmen kann, wird auch der doppelt differentielle Wirkungsquerschnitt $ {\frac {d^{2}\sigma }{d\Omega \cdot dE_{s}}} $ betrachtet, da er die detaillierteste physikalische Beschreibung erlaubt.
In der klassischen Mechanik fliegen alle Teilchen auf wohldefinierten Trajektorien. Für Reaktionen, die eine Berührung von Projektil- und Targetteilchen voraussetzen, wird der Begriff geometrischer Wirkungsquerschnitt benutzt, denn hier haben nicht nur die Größe des Wirkungsquerschnitt als Trefferfläche, sondern auch deren Form und Lage (relativ zum Targetteilchen) eine einfache geometrische Bedeutung: alle Teilchen, die auf ihrer Trajektorie durch diese Fläche fliegen, lösen die betrachtete Reaktion aus, alle anderen nicht.
Beide Beispiele zeigen, dass man nicht einmal den geometrischen Wirkungsquerschnitt mit der Größe eines der beteiligten Körper identifizieren darf (außer wenn das Projektil einschließlich der Reichweite der Kraft als punktförmig angesehen wird). Das zweite zeigt zudem, wie groß der Anwendungsbereich des Begriffs Wirkungsquerschnitt sein kann.
Bei Wellenphänomenen ist die geometrische Interpretation nicht möglich. Auch in der Quantenmechanik können prinzipiell keine deterministischen Aussagen über einzelne Projektil- oder Targetteilchen gemacht werden.
In der Physik der Kernreaktoren wird neben dem oben definierten mikroskopischen (d. h. auf 1 Targetteilchen, meist 1 Atom bezogenen) Wirkungsquerschnitt auch der makroskopische, auf 1 cm3 Material bezogene Wirkungsquerschnitt mit dem Formelzeichen $ \Sigma $ (großes Sigma) verwendet. Er ergibt sich aus dem mikroskopischen Wirkungsquerschnitt durch Multiplikation mit der Atomzahldichte, also der Zahl der jeweiligen Atome pro cm3. Damit entspricht er dem Kehrwert der oben eingeführten mittleren freien Weglänge. Die übliche Einheit des makroskopischen Wirkungsquerschnitts ist cm2/cm3 = 1/cm. In diesem Anwendungsbereich sind im Allgemeinen die Energien der beiden Reaktionspartner nicht einheitlich festgelegt, so dass die kinetische Energie in ihrem Schwerpunktsystem im Rahmen einer bestimmten Häufigkeitsverteilung variiert. Die interessierende Größe ist dann der mit dieser Verteilung ermittelte Durchschnittswert der makroskopischen Wirkungsquerschnitte. Dieser kann z. B. temperaturabhängig sein.
Im thermodynamischen Gleichgewicht besitzen die Atome und Moleküle der Materie bei einer gegebenen Temperatur eine im Vergleich zu den Teilchen geringe kinetische Energie. In einem thermischen Reaktor erreicht ein Neutron nach sehr kurzer Zeit (in der Größenordnung von Mikrosekunden), vor allem durch elastische Streuung am Proton des Wassermoleküls, die „Temperatur“ des Mediums. Dann wird der Wirkungsquerschnitt nicht mehr durch die Geschwindigkeit des Teilchens allein, sondern von der Relativgeschwindigkeit von Atomkern und Teilchen abhängen. Der Wirkungsquerschnitt wird temperaturabhängig und man spricht von einem temperaturabhängigen Wirkungsquerschnitt oder einem temperaturabhängigen makroskopischen Wirkungsquerschnitt.
Fermis Goldene Regel besagt, dass für die Reaktionsrate $ W $ (Anzahl von Reaktionen pro Zeit) gilt:
mit
Da die Reaktionsrate außerdem direkt proportional zum (differentiellen) Wirkungsquerschnitt ist
gilt folglich: