imported>UvM (Änderung 169370978 von 2003:78:8D13:F300:B461:E23D:9982:B6F rückgängig gemacht; N und A definieren) |
91.55.216.12 (Diskussion) (→Energieabhängigkeit: Tippfehler) |
||
Zeile 2: | Zeile 2: | ||
| Name = Feinstrukturkonstante | | Name = Feinstrukturkonstante | ||
| Formelzeichen = <math> \alpha </math> | | Formelzeichen = <math> \alpha </math> | ||
| WertSI = {{ZahlExp|7,29735256|−3|suffix=93(11)}}<br />≈ {{Bruch|137}} | |||
| WertSI = | | Genauigkeit = {{ZahlExp|1,5|−10}} | ||
| Genauigkeit = | | Formel = <math> \alpha = \frac{e^2}{4 \pi\, \varepsilon_0\, \hbar\, c } </math> | ||
| Anmerkung = Quelle SI-Wert: [[CODATA]] 2018 ([http://physics.nist.gov/cgi-bin/cuu/Value?alph Direktlink])<br /><small>Der Wert gilt für ''jedes'' Einheiten­system, nicht nur SI.</small> | |||
| Formel = <math> \alpha = \frac{e^2}{4 \pi\, \varepsilon_0\, \hbar\, c } </math> | |||
| Anmerkung = Quelle SI-Wert: [[CODATA]] | |||
}} | }} | ||
[[Datei:Sommerfeld-Muenchen.jpg|mini|hochkant|Sommerfeld-Büste in der [[Ludwig-Maximilians-Universität|Universität München]]. Unter der Büste steht die Formel der Feinstruktur­konstante (angegeben im [[Gaußsches Einheitensystem|Gaußschen Einheiten­system]]).]] | |||
Die '''Feinstrukturkonstante''' <math> \alpha </math> ist eine [[physikalische Konstante]] der [[Größe der Dimension Zahl|Dimension Zahl]], die die Stärke der [[Elektromagnetische Wechselwirkung|elektromagnetischen Wechselwirkung]] angibt. Sie wurde 1916 von [[Arnold Sommerfeld]] bei der theoretischen Erklärung der Aufspaltung ([[Feinstruktur (Physik)|Feinstruktur]]) von [[Spektrallinien]] im Spektrum des [[Wasserstoffatom]]s eingeführt<ref>{{cite journal |author=[[Arnold Sommerfeld]] |year=1916 |title=Zur Quantentheorie der Spektrallinien |journal=[[Annalen der Physik]] |volume=4 |issue=51 |pages=51–52 |url=https://babel.hathitrust.org/cgi/pt?id=nyp.33433090771183&view=1up&seq=65}} Gleichung 12a, ''"rund <math>7 \cdot 10^{-3}</math>"''</ref>, daher wird sie auch '''Sommerfeldkonstante''' oder '''Sommerfeldsche Feinstrukturkonstante''' genannt. | |||
Sommerfeld definierte sie ursprünglich als das Verhältnis der Bahngeschwindigkeit des Elektrons im Grundzustand des Bohrschen Wasserstoffatoms zur Lichtgeschwindigkeit im Vakuum<ref>Arnold Sommerfeld: ''Atombau und Spektrallinien''. Braunschweig: Friedr. Vieweg & Sohn, 2. Auflage, 1921. S. 241–242, Gleichung 8. [https://archive.org/stream/atombauundspekt00sommgoog?ref=ol#page/n261/mode/2up online] ''"Das Verhältnis <math>v_{1}/c</math> nennen wir <math>\alpha</math>."''</ref>. | |||
In der [[Quantenelektrodynamik]] steht die Feinstrukturkonstante für die Stärke, mit der das [[Austauschteilchen]] der elektromagnetischen Wechselwirkung, das [[Photon]], an ein elektrisch geladenes [[Elementarteilchen]], zum Beispiel ein [[Elektron]], koppelt. Daher ist sie die elektromagnetische [[Kopplungskonstante]], die bestimmt, wie stark die (abstoßenden oder anziehenden) Kräfte zwischen elektrisch geladenen Teilchen sind und wie schnell die elektromagnetisch verursachten Prozesse, z. B. die [[spontane Emission]] von Licht, ablaufen. | |||
== Wert == | == Wert == | ||
Der vom [[Committee on Data for Science and Technology]] empfohlene Wert beträgt:<ref name="CODATA=Feinstrukkonst">{{internetquelle |url=http://physics.nist.gov/cgi-bin/cuu/Value?alph |hrsg=National Institute of Standards and Technology |titel=CODATA Recommended Values |zugriff=2019-06-06}} Wert für <math>\alpha</math>.</ref><ref name="CODATA=Feinstrukkonst_inv">{{internetquelle |url=http://physics.nist.gov/cgi-bin/cuu/Value?alphinv |hrsg=National Institute of Standards and Technology |titel=CODATA Recommended Values |zugriff=2019-06-06}} Wert für <math>\frac{1}{\alpha}</math>.</ref> | |||
: <math>\alpha\ =7{,}297\,352\,569\,3(11) \cdot 10^{-3} \ = \ \frac{1}{137{,}035\,999\,084\,(21)},</math> | |||
wobei die eingeklammerten Ziffern die Unsicherheit in den letzten Stellen des Wertes bezeichnen. Diese Unsicherheit ist als [[CODATA#Standardunsicherheiten von CODATA-Werten|geschätzte Standardabweichung]] des angegebenen Zahlenwertes vom tatsächlichen Wert angegeben. | |||
Der bisher genaueste Wert (Genauigkeit <math>2 \cdot 10^{-10}</math>) wurde 2018 mit [[Atominterferometer|Atominterferometrie]] bestimmt:<ref>Richard H. Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, Holger Müller: Measurement of the fine-structure constant as a test of the Standard Model, Science 360 (2018) 191–95, [http://science.sciencemag.org/content/360/6385/191 Abstract]</ref><ref>[http://www.pro-physik.de/details/news/10988354/Rekordmessung_der_Feinstrukturkonstanten.html Rainer Scharf: Rekordmessung der Feinstrukturkonstanten], Pro Physik, 13. April 2018</ref> | |||
: <math>\alpha | :<math>\frac {1}{\alpha}= 137{,}035\,999\,046(27) </math> | ||
Die Feinstrukturkonstante | Die Feinstrukturkonstante ist mit der [[Elementarladung]] <math>e</math>, dem [[Plancksches Wirkungsquantum|Planckschen Wirkungsquantum]] <math>h</math>, der [[Lichtgeschwindigkeit]] <math>c</math> und der [[Elektrische Feldkonstante|elektrischen Feldkonstante]] <math>\varepsilon_0</math> wie folgt verknüpft: | ||
:<math>\alpha\ =\ \frac{1}{2 c\, \varepsilon_0}\;\frac{e^2}{h} | :<math>\alpha\ =\ \frac{1}{2 c\,\varepsilon_0}\;\frac{e^2}{h} | ||
=\ \frac{1}{4 \pi | =\ \frac{1}{4 \pi\, \varepsilon_0}\;\frac{e^2}{\hbar\cdot c}.</math> | ||
Den Konstanten <math>e, h</math> und <math>c</math> wurde im [[Internationales Einheitensystem|internationalen Einheitensystem]] (SI) ein fester Wert zugewiesen. Daher ist die Feinstrukturkonstante direkt und mit identischer Messgenauigkeit mit der elektrischen Feldkonstante verknüpft. | |||
Vor der [[Internationales Einheitensystem#Neudefinition2019|Revision des SI]] im Jahr 2019 waren <math>c</math> und <math>\varepsilon_0</math> fest definiert, <math>h</math> und <math>e</math> hingegen experimentell zu bestimmende Größen. Für die Messung der Feinstrukturkonstante nutzte man aus, dass <math>e^2/h</math> der Kehrwert des aus dem [[Quanten-Hall-Effekt]] bestimmbaren [[Von-Klitzing-Konstante|von-Klitzing’schen Elementarwiderstandes]] ist, der sehr genau gemessen werden konnte. | |||
== Vergleich der Grundkräfte der Physik == | == Vergleich der Grundkräfte der Physik == | ||
Direkt kann die Stärke der elektromagnetischen Wechselwirkung nur mit der [[Gravitation]] verglichen werden, da beide Kräfte dem gleichen [[Abstandsgesetz]] gehorchen: Die Stärke der Kraft nimmt mit dem Quadrat des Abstandes ab.<ref>Rohlf, James William: ''Modern Physics from a to Z0'', Wiley | Direkt kann die Stärke der elektromagnetischen Wechselwirkung nur mit der [[Gravitation]] verglichen werden, da beide Kräfte dem gleichen [[Abstandsgesetz]] gehorchen: Die Stärke der Kraft nimmt mit dem Quadrat des Abstandes ab.<ref>Rohlf, James William: ''Modern Physics from a to Z0'', Wiley 1994</ref> | ||
Will man die durch die [[Gravitationskonstante]] angegebene Stärke der Gravitation zwischen zwei Elementarteilchen in einer wie die Feinstrukturkonstante dimensionslosen Zahl angeben, so hängt dieser Wert von der Masse der beiden Elementarteilchen ab. Für die Stärke zwischen zwei relativ massereichen Protonen erhält man eine größere dimensionslose Zahl als für die Stärke zwischen zwei Elektronen. Aber selbst für die Anziehungskraft zwischen zwei Protonen erhält man nur: | |||
:<math>\alpha_G\ = \frac{G \, m_p^2}{\hbar \, c}\ \approx\ 5{,}9 \cdot 10^{-39}.</math> | :<math>\alpha_G\ = \frac{G \, m_p^2}{\hbar \, c}\ \approx\ 5{,}9 \cdot 10^{-39}.</math> | ||
Vergleicht man diesen Wert mit der Feinstrukturkonstanten, die die Stärke der elektrischen Abstoßung zwischen den beiden Protonen angibt, sieht man, dass die elektromagnetische Wechselwirkung | Vergleicht man diesen Wert mit der Feinstrukturkonstanten, die die Stärke der elektrischen Abstoßung zwischen den beiden Protonen angibt, sieht man, dass die elektromagnetische Wechselwirkung etwa 10<sup>36</sup>-mal stärker ist als die Gravitation ([[Hierarchieproblem]]). | ||
Die [[Starke Wechselwirkung]] hat eine energieabhängige (‚laufende') Kopplungskonstante. Der Vergleichswert für die Kraft zwischen zwei [[Nukleon]]en im [[Atomkern]] ist | Die [[Starke Wechselwirkung]] hat eine energieabhängige (‚laufende') Kopplungskonstante. Der Vergleichswert für die Kraft zwischen zwei [[Nukleon]]en im [[Atomkern]] ist | ||
Zeile 49: | Zeile 55: | ||
Die Antwort auf die Frage, ob die Feinstrukturkonstante zeitlich variiert oder seit dem [[Urknall]] unverändert ist, ist von beträchtlichem theoretischen Interesse. Bisherige Überlegungen und Messungen konnten bislang keine Veränderung [[Statistische Signifikanz|signifikant]] nachweisen. | Die Antwort auf die Frage, ob die Feinstrukturkonstante zeitlich variiert oder seit dem [[Urknall]] unverändert ist, ist von beträchtlichem theoretischen Interesse. Bisherige Überlegungen und Messungen konnten bislang keine Veränderung [[Statistische Signifikanz|signifikant]] nachweisen. | ||
Experimente und Messungen | Experimente und Messungen dazu werden auf ganz unterschiedlichen Zeitskalen durchgeführt:<ref>[[John D. Barrow]]: ''Varying Constants'', Phil. Trans. Roy. Soc. Lond. A363 (2005) 2139–2153, [http://arxiv.org/abs/astro-ph/0511440 online]</ref><ref>Jean-Philippe Uzan: ''The fundamental constants and their variation: observational status and theoretical motivations'', Rev.Mod.Phys. 75 (2003) 403, [http://arxiv.org/abs/hep-ph/0205340 online]</ref> | ||
* Laborexperimente, beispielsweise mit [[Atomuhr]]en, können die relative zeitliche Veränderung von <math>\alpha</math> auf höchstens (−1,6 ± 2,3) × 10<sup>−17</sup>/Jahr einschränken.<ref>T. Rosenband: ''Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place'', Science, Vol. 319, 28. März 2008.</ref> | |||
* Die Beobachtung von [[Absorptionslinie]]n von [[Quasar]]en verbessert diese Genauigkeit um ein bis zwei Größenordnungen,<ref> | |||
{{Cite journal | author = M. T. Murphy, J. K. Webb, V. V. Flambaum | year = 2003 | title = Further Evidence for a Variable Fine-Structure Constant from Keck/HIRES QSO Absorption Spectra | journal = [[Monthly Notices of the Royal Astronomical Society]] | volume = 345 | pages = 609 | doi =10.1046/j.1365-8711.2003.06970.x | arxiv =1008.3907}}</ref><ref>R. Quast, D. Reimers, S. A. Levshakov: ''Probing the variability of the fine-structure constant with the VLT/UVES'', Astron. Astrophys. 415 (2004) L7, [http://arxiv.org/abs/astro-ph/0311280 online]</ref> wobei die Behandlung [[systematischer Fehler]] aber schwierig ist und bislang sowohl signifikant positive als auch [[Nullresultat]]e publiziert wurden. Eine abschließende Auswertung aller Daten steht noch aus. | |||
* Die Betrachtung der [[primordiale Nukleosynthese|primordialen Nukleosynthese]] ergibt keine Veränderungen auch für Zeiten unmittelbar nach dem Urknall, allerdings mit größerer Unsicherheit. | |||
* Der [[Naturreaktor Oklo]]<ref>[[Hans Klapdor-Kleingrothaus]], A. Staudt: ''Teilchenphysik ohne Beschleuniger''. Teubner, 1995, ISBN 3-519-03088-8.</ref><ref>Yasunori Fujii: ''Oklo Constraint on the Time-Variability of the Fine-Structure Constant'', in: S. G. Karshenboim und E. Peik (Hg.), ''Astrophysics, Clocks and Fundamental Constants'', Lecture Notes in Physics 648, Springer 2004, S. 167–185, [https://doi.org/10.1007/978-3-540-40991-5_11 doi:10.1007/978-3-540-40991-5_11], [http://arxiv.org/abs/hep-ph/0311026 arxiv:hep-ph/0311026]</ref> und die [[Isotop]]enverteilung in [[Meteorit]]en wurden ebenfalls für Abschätzungen benutzt. | |||
1999 behauptete ein Team unter der Leitung von John K. Webb erstmals eine Variation in α entdeckt zu haben.<ref>{{cite journal |author=J. K. Webb |year=1999 |title=Search for Time Variation of the Fine Structure Constant |journal=[[Physical Review Letters]] |volume=82 |issue=5 |pages=884–887 |arxiv=astro-ph/9803165 |bibcode=1999PhRvL..82..884W |doi=10.1103/PhysRevLett.82.884 |url=http://cds.cern.ch/record/349066}}</ref> Im April 2020 bestätigen Wissenschaftler unter der Leitung von Webb vier Messungen der Feinstrukturkonstante mittels Quasar [[ULAS J1120+0641]] und berichteten, dass der Wert der „Konstante“ von anderen Messdaten variiert. Ihre Studie bestärkt die Hypothese, nach der physikalische Gesetze in räumlichen „Richtungen“ des Universums variieren können und es somit anisotropisch ist. Dies hätte Implikationen für Theorien [[Physikalische Konstante#Feinabstimmung der Naturkonstanten|zur Entstehung der Bewohnbarkeit des Alls]]. Bereits 2011 wurde eine Studie über Indizien zu einem räumlichen [[Dipol (Physik)|Dipol]] im All veröffentlicht.<ref>{{cite news |title=New findings suggest laws of nature 'downright weird,' not as constant as previously thought |url=https://phys.org/news/2020-04-laws-nature-downright-weird-constant.html |accessdate=2020-05-17 |work=phys.org |language=en}}</ref><ref name="SA-20200428">{{cite news |author=David Field |title=New Tests Suggest a Fundamental Constant of Physics Isn't The Same Across The Universe |url=https://www.sciencealert.com/new-tests-suggest-the-fundamental-forces-of-nature-aren-t-constant-across-the-universe |date=2020-04-28 |work=ScienceAlert.com |accessdate=2020-04-29 }}</ref><ref>{{cite journal |author=Michael R. Wilczynska, et al. |title=Four direct measurements of the fine-structure constant 13 billion years ago |journal=Science Advances |date=2020-04-01 |volume=6 |issue=17 |pages=eaay9672 |doi=10.1126/sciadv.aay9672 |pmid=32426462 |arxiv=2003.07627 |bibcode=2020SciA....6.9672W}}</ref> | |||
{{ | |||
== Energieabhängigkeit == | == Energieabhängigkeit == | ||
In der [[Elementarteilchenphysik]] | In der [[Elementarteilchenphysik]] ist die Feinstrukturkonstante der Limes einer von der Längenskala abhängigen Kopplungskonstante im Grenzfall großer Abstände oder kleiner Energien. | ||
Die charakteristische Skala ist dabei die [[Compton-Wellenlänge]] oder gleichbedeutend die [[Ruheenergie]] | |||
<math>E_0\approx 0,511</math> [[Elektronenvolt#Dezimale_Vielfache|MeV]] des Elektrons. | |||
Oberhalb dieser Energie wächst die Kopplungskonstante und erreicht z. B. bei der Masse des [[Z-Boson]]s (91 GeV) den Wert <math>\alpha \approx \tfrac{1}{128}.</math> Unterhalb dieser Energie erreicht die Kopplungskonstante einen konstanten Wert. Die Feinstrukturkonstante ist in diesem Sinn eine Funktion der Elektronenmasse. | |||
In der Atomphysik, etwa in der [[Spektroskopie]], betragen die Energien nur einige [[Elektronenvolt|eV]], und die Energieabhängigkeit von <math>\alpha</math> ist vernachlässigbar.<ref>Christoph Berger: Elementarteilchenphysik, Von den Grundlagen zu den modernen Experimenten, Springer 2006, 2. Auflage, S. 194</ref> | |||
Eine anschauliche Erklärung für das Anwachsen der Kopplungskonstante mit der Energie ist, dass ein Elektron von Elektron-Positron-Paaren umgeben ist ([[Vakuumfluktuation|Vakuumfluktuationen]], virtuelle Teilchen), die ein polarisierbares Medium darstellen. | |||
Bei höherer Stoßenergie kommen sich zwei Teilchen näher und es befinden sich zwischen ihnen weniger Elektron-Positron-Paare, die die Wechselwirkung abschirmen. | |||
== Zitate == | == Zitate == | ||
{{Zitat-en | {{Zitat-en | ||
|''It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.''| Übersetzung = Sie war stets ein Mysterium, seit sie vor über fünfzig Jahren entdeckt wurde, und alle guten theoretischen Physiker hängen sich diese Zahl an die Wand und zerbrechen sich über sie den Kopf. | |''It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.''| Übersetzung = Sie war stets ein Mysterium, seit sie vor über fünfzig Jahren entdeckt wurde, und alle guten theoretischen Physiker hängen sich diese Zahl an die Wand und zerbrechen sich über sie den Kopf. | ||
|[[Richard Feynman|Richard P. Feynman]] <ref>QED – The strange theory of light and matter, Princeton University Press 1985, | |[[Richard Feynman|Richard P. Feynman]]<ref>QED – The strange theory of light and matter, Princeton University Press 1985, S. 129</ref> | Quelle = | ||
| ref = | | ref = | ||
}} | }} |
Physikalische Konstante | |
---|---|
Name | Feinstrukturkonstante |
Formelzeichen | $ \alpha $ |
Wert | |
SI | 7.2973525693(11)e-3 ≈ 1⁄137 |
Unsicherheit (rel.) | 1.5e-10 |
Bezug zu anderen Konstanten | |
$ \alpha ={\frac {e^{2}}{4\pi \,\varepsilon _{0}\,\hbar \,c}} $ | |
Quellen und Anmerkungen | |
Quelle SI-Wert: CODATA 2018 (Direktlink) Der Wert gilt für jedes Einheitensystem, nicht nur SI. |
Die Feinstrukturkonstante $ \alpha $ ist eine physikalische Konstante der Dimension Zahl, die die Stärke der elektromagnetischen Wechselwirkung angibt. Sie wurde 1916 von Arnold Sommerfeld bei der theoretischen Erklärung der Aufspaltung (Feinstruktur) von Spektrallinien im Spektrum des Wasserstoffatoms eingeführt[1], daher wird sie auch Sommerfeldkonstante oder Sommerfeldsche Feinstrukturkonstante genannt.
Sommerfeld definierte sie ursprünglich als das Verhältnis der Bahngeschwindigkeit des Elektrons im Grundzustand des Bohrschen Wasserstoffatoms zur Lichtgeschwindigkeit im Vakuum[2].
In der Quantenelektrodynamik steht die Feinstrukturkonstante für die Stärke, mit der das Austauschteilchen der elektromagnetischen Wechselwirkung, das Photon, an ein elektrisch geladenes Elementarteilchen, zum Beispiel ein Elektron, koppelt. Daher ist sie die elektromagnetische Kopplungskonstante, die bestimmt, wie stark die (abstoßenden oder anziehenden) Kräfte zwischen elektrisch geladenen Teilchen sind und wie schnell die elektromagnetisch verursachten Prozesse, z. B. die spontane Emission von Licht, ablaufen.
Der vom Committee on Data for Science and Technology empfohlene Wert beträgt:[3][4]
wobei die eingeklammerten Ziffern die Unsicherheit in den letzten Stellen des Wertes bezeichnen. Diese Unsicherheit ist als geschätzte Standardabweichung des angegebenen Zahlenwertes vom tatsächlichen Wert angegeben.
Der bisher genaueste Wert (Genauigkeit $ 2\cdot 10^{-10} $) wurde 2018 mit Atominterferometrie bestimmt:[5][6]
Die Feinstrukturkonstante ist mit der Elementarladung $ e $, dem Planckschen Wirkungsquantum $ h $, der Lichtgeschwindigkeit $ c $ und der elektrischen Feldkonstante $ \varepsilon _{0} $ wie folgt verknüpft:
Den Konstanten $ e,h $ und $ c $ wurde im internationalen Einheitensystem (SI) ein fester Wert zugewiesen. Daher ist die Feinstrukturkonstante direkt und mit identischer Messgenauigkeit mit der elektrischen Feldkonstante verknüpft.
Vor der Revision des SI im Jahr 2019 waren $ c $ und $ \varepsilon _{0} $ fest definiert, $ h $ und $ e $ hingegen experimentell zu bestimmende Größen. Für die Messung der Feinstrukturkonstante nutzte man aus, dass $ e^{2}/h $ der Kehrwert des aus dem Quanten-Hall-Effekt bestimmbaren von-Klitzing’schen Elementarwiderstandes ist, der sehr genau gemessen werden konnte.
Direkt kann die Stärke der elektromagnetischen Wechselwirkung nur mit der Gravitation verglichen werden, da beide Kräfte dem gleichen Abstandsgesetz gehorchen: Die Stärke der Kraft nimmt mit dem Quadrat des Abstandes ab.[7]
Will man die durch die Gravitationskonstante angegebene Stärke der Gravitation zwischen zwei Elementarteilchen in einer wie die Feinstrukturkonstante dimensionslosen Zahl angeben, so hängt dieser Wert von der Masse der beiden Elementarteilchen ab. Für die Stärke zwischen zwei relativ massereichen Protonen erhält man eine größere dimensionslose Zahl als für die Stärke zwischen zwei Elektronen. Aber selbst für die Anziehungskraft zwischen zwei Protonen erhält man nur:
Vergleicht man diesen Wert mit der Feinstrukturkonstanten, die die Stärke der elektrischen Abstoßung zwischen den beiden Protonen angibt, sieht man, dass die elektromagnetische Wechselwirkung etwa 1036-mal stärker ist als die Gravitation (Hierarchieproblem).
Die Starke Wechselwirkung hat eine energieabhängige (‚laufende') Kopplungskonstante. Der Vergleichswert für die Kraft zwischen zwei Nukleonen im Atomkern ist
Vergleicht man die Zerfallsraten aus starken und schwachen Zerfällen, so erhält man für die Schwache Kraft eine Kopplungskonstante von
Die Antwort auf die Frage, ob die Feinstrukturkonstante zeitlich variiert oder seit dem Urknall unverändert ist, ist von beträchtlichem theoretischen Interesse. Bisherige Überlegungen und Messungen konnten bislang keine Veränderung signifikant nachweisen.
Experimente und Messungen dazu werden auf ganz unterschiedlichen Zeitskalen durchgeführt:[8][9]
1999 behauptete ein Team unter der Leitung von John K. Webb erstmals eine Variation in α entdeckt zu haben.[15] Im April 2020 bestätigen Wissenschaftler unter der Leitung von Webb vier Messungen der Feinstrukturkonstante mittels Quasar ULAS J1120+0641 und berichteten, dass der Wert der „Konstante“ von anderen Messdaten variiert. Ihre Studie bestärkt die Hypothese, nach der physikalische Gesetze in räumlichen „Richtungen“ des Universums variieren können und es somit anisotropisch ist. Dies hätte Implikationen für Theorien zur Entstehung der Bewohnbarkeit des Alls. Bereits 2011 wurde eine Studie über Indizien zu einem räumlichen Dipol im All veröffentlicht.[16][17][18]
In der Elementarteilchenphysik ist die Feinstrukturkonstante der Limes einer von der Längenskala abhängigen Kopplungskonstante im Grenzfall großer Abstände oder kleiner Energien. Die charakteristische Skala ist dabei die Compton-Wellenlänge oder gleichbedeutend die Ruheenergie $ E_{0}\approx 0,511 $ MeV des Elektrons. Oberhalb dieser Energie wächst die Kopplungskonstante und erreicht z. B. bei der Masse des Z-Bosons (91 GeV) den Wert $ \alpha \approx {\tfrac {1}{128}}. $ Unterhalb dieser Energie erreicht die Kopplungskonstante einen konstanten Wert. Die Feinstrukturkonstante ist in diesem Sinn eine Funktion der Elektronenmasse.
In der Atomphysik, etwa in der Spektroskopie, betragen die Energien nur einige eV, und die Energieabhängigkeit von $ \alpha $ ist vernachlässigbar.[19]
Eine anschauliche Erklärung für das Anwachsen der Kopplungskonstante mit der Energie ist, dass ein Elektron von Elektron-Positron-Paaren umgeben ist (Vakuumfluktuationen, virtuelle Teilchen), die ein polarisierbares Medium darstellen. Bei höherer Stoßenergie kommen sich zwei Teilchen näher und es befinden sich zwischen ihnen weniger Elektron-Positron-Paare, die die Wechselwirkung abschirmen.
“It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.”
„Sie war stets ein Mysterium, seit sie vor über fünfzig Jahren entdeckt wurde, und alle guten theoretischen Physiker hängen sich diese Zahl an die Wand und zerbrechen sich über sie den Kopf.“