Wärmestrahlung

Wärmestrahlung

Version vom 24. September 2017, 21:54 Uhr von imported>Pemu (Nachtrag)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Wärmestrahlung oder auch thermische Strahlung, seltener Temperaturstrahlung, ist elektromagnetische Strahlung, die am Ort ihrer Entstehung im thermischen Gleichgewicht mit Materie ist.

Intensität der Schwarzkörperstrahlung in Abhängigkeit von der Wellenlänge bei unterschiedlichen Temperaturen (Skalen logarithmisch). Der farbige Balken markiert den Bereich sichtbaren Lichts. Die Kurve für die Sonnenstrahlung ist beige, für die Umgebungstemperatur rot. Man beachte die starke Zunahme der Intensität mit der Temperatur und die Verschiebung des Maximums zu kürzeren Wellenlängen.

Wärmestrahlung wird von allen Festkörpern, Flüssigkeiten, Plasmen und genügend großen Gasmassen emittiert. Die höchste Emission zeigt bei allen Wellenlängen und Temperaturen der ideale Schwarze Körper. Dieses theoretische Maximum wird von realen Körpern nicht vollständig erreicht. Das plancksche Strahlungsgesetz beschreibt die spektrale Strahlungsintensität, die bei gegebener Wellenlänge und Temperatur von einem idealen schwarzen Körper emittiert wird.

Weil bei üblichen Umgebungstemperaturen das Strahlungsmaximum im infraroten Bereich liegt, wird umgangssprachlich unter Wärmestrahlung meist nur die nicht sichtbare infrarote Strahlung verstanden. Jedoch verschiebt sich mit steigender Temperatur das Strahlungsmaximum der Wärmestrahlung zu kürzeren Wellenlängen, beim Sonnenlicht z. B. in den sichtbaren Bereich mit Ausläufern bis ins Ultraviolett.

Emission und Absorption von Wärmestrahlung ist neben Konvektion und Wärmeleitung ein Weg zur Übertragung von Wärme, im Vakuum ist es der einzige Übertragungsweg.

Entstehung

Wärmestrahlung ist ein makroskopisches Phänomen, an ihrer Entstehung sind notwendigerweise eine Vielzahl von Teilchen und elementaren Anregungen beteiligt. Einem einzelnen Teilchen des strahlenden Körpers kann man keine Temperatur zuordnen, es kann nicht thermisch strahlen. Auf den genauen Mechanismus dieser Prozesse kommt es dabei nicht an. Für jeden Mechanismus ist das entstehende Spektrum thermisch, wenn nur die für thermische Anregung charakteristische Energie $ k_{\mathrm {B} }T $ an die für den Mechanismus typischen Energiestufen heranreicht oder sie übertrifft ($ k_{\mathrm {B} } $ ist die Boltzmann-Konstante und $ T $ die Temperatur des strahlenden Körpers). Andernfalls wäre dieser Mechanismus entweder nicht beteiligt oder seine Anregung nicht thermisch.

Thermisches Gleichgewicht zwischen Strahlung und Materie setzt voraus, dass von den entstehenden Photonen der weitaus größte Teil nicht aus dem Körper entweicht („auskoppelt“), sondern noch innerhalb des Körpers wieder absorbiert wird. Wenn das für Photonen jeder Wellenlänge gilt, wirkt sich die Wellenlängenabhängigkeit der Emission und Absorption (also der Stärke der Kopplung der Teilchen an das Strahlungsfeld) nicht auf das Spektrum der Strahlung aus. Durch vielfache Abfolge der elementaren Strahlungsprozesse – Emission, Streuung und Absorption an den Teilchen des Körpers – entsteht das kontinuierliche und zur jeweiligen Temperatur des Körpers gehörende thermische Spektrum. Beispielsweise würde ein einzelner Kubikmeter aus der Photosphäre der Sonne dafür noch zu klein sein und daher ein ausgeprägtes Linienspektrum aufweisen (und nur kurz und schwach leuchten). Bei Wellenlängen zwischen den Spektrallinien hat das Material eine optische Tiefe, die viel größer ist als 1 m. Allerdings bleibt sie bei allen Wellenlängen geringer als die Dicke der Photosphäre von etwa 100 km. Daher ist das Spektrum der Sonne doch weitgehend thermisch.

Selbst wenn das Strahlungsfeld in der Quelle thermisch ist, kann sein Spektrum außerhalb deutlich davon abweichen, wenn die Auskopplung wellenlängenabhängig ist. Das tritt z. B. durch den Sprung des wellenlängenabhängigen Brechungsindex an der Oberfläche ein. Bei Metallen bewirkt er den Glanz. Der Sprung reflektiert aber nicht nur äußere Strahlung, sondern auch die thermische Strahlung von innen. Das würde das Spektrum nur dann nicht beeinflussen, wenn die äußere Strahlung ebenfalls thermisch bei gleicher Temperatur wäre. Das ist bei Messungen aber nie der Fall, denn um das Spektrum thermischer Strahlung messen zu können, muss der Empfänger kälter sein als die Quelle (bei BOOMERanG waren es 0,27 K).

Beispiele für nicht-thermische Strahlung

  • Im Mikrowellenherd wird die Energie nur auf einer Frequenz (2,45 GHz) eingestrahlt, was im Spektrum einer einzigen Linie (bei ca. 122 mm) entspricht. Obwohl diese Strahlung von Wasser absorbiert wird und es somit erwärmt wird, handelt es sich bei diesem Linienspektrum nicht um Wärmestrahlung.
  • Gleiches trifft auch auf einen Kohlendioxidlaser zu: Obwohl man mit einem leistungsstarken CO2-Laser Metalle und Steine schmelzen kann, erzeugt er keine Wärmestrahlung, sondern monochromatische Strahlung der Wellenlänge 10,6 µm. Auch wenn diese Linie im (umgangssprachlich auch Wärmestrahlung genannten) Infrarotbereich liegt, bedeutet es auch hier nicht, dass es sich um thermische Strahlung handelt. Beim Vergleich mit einem Laserpointer ist zu erkennen, dass es (im Gegensatz zur thermischen Strahlung) keinen einfachen Zusammenhang zwischen Wellenlänge und Temperatur gibt: Zwar ist die Wellenlänge des Laserpointers etwa um den Faktor 20 kleiner, somit transportiert jedes Photon die zwanzigfache Energie; dennoch kann man damit keine Metalle schmelzen, da die insgesamt ausgesandte Leistung um Größenordnungen geringer ist.
  • Das Spektrum einer Röntgenröhre besteht aus der Bremsstrahlung und zusätzlichen auffälligen Spektrallinien bei bestimmten Wellenlängen. Die Intensität der Bremsstrahlung zeigt auch einen „Buckel“ wie die Wärmestrahlung; dessen Form weicht aber erheblich vom planckschen Strahlungsgesetz ab und besitzt außerdem – im Gegensatz zur Wärmestrahlung – eine obere Grenzfrequenz. Deshalb ist diese Bremsstrahlung keine thermische Strahlung.
  • Das Spektrum von Leuchtstofflampen jeglicher Bauart sowie Gasentladungslampen wie etwa der Natriumdampflampe besitzt keine Ähnlichkeit mit dem thermischen Spektrum eines planckschen Strahlers. Vielmehr wird das Material dieser Lichterzeuger so gewählt, dass möglichst viel Leistung im sichtbaren Bereich abgestrahlt wird und möglichst wenig abseits davon (etwa im Infrarotbereich). Nur dadurch kann der gewünschte hohe Wirkungsgrad erzielt werden. Starke Abweichungen von einem weißen, thermischen Spektrum können die Farbwiedergabe beleuchteter Gegenstände beeinträchtigen.

Praktische Unterscheidung

Durch Vergleichsmessung der Intensität bei verschiedenen Wellenlängen kann man entscheiden, ob eine Lichtquelle „thermisch“ oder „nicht-thermisch“ ist und so auf die Art der Quelle rückschließen. Das Ergebnis wird auch als Signatur einer Lichtquelle bezeichnet.

  • Beispiel Kohlendioxidlaser: Filtert man unterschiedliche Wellenlängen wie beispielsweise 9 µm, 10,6 µm und 13 µm, misst man nur bei 10,6 µm nennenswerte Lichtleistung. Kein thermischer Strahler kann solch ein enges Spektrum erzeugen.
  • Wiederholt man die Messung an einer Glühlampe, wird man drei Ergebnisse erhalten, die sich kaum unterscheiden, weil der „Buckel“ der Planckschen Strahlungskurve in diesem Bereich relativ flach verläuft. Das ist ein starkes Indiz für einen thermischen Strahler, weil man kaum Gasentladungslampen mit so großer Linienbreite bauen kann. Im Zweifelsfall müssen Messungen bei weiteren Wellenlängen durchgeführt werden.

Solche Vergleichsmessungen führen die Infrarotsuchköpfe von Lenkwaffen aus, um zwischen heißen Triebwerken von Flugzeugen und Täuschkörpern zu unterscheiden, deren Licht eher eine nichtthermische Signatur aufweist. Übertragen auf den sichtbaren Bereich, entspricht das einem Vergleich von glühenden Funken mit buntem Feuerwerk, das durch Flammenfärbung ein ausgeprägtes Linienspektrum besitzt.

In der Radioastronomie und bei SETI wird ständig nach nicht-thermischen Signaturen gesucht: Die 21-cm-Linie des Wasserstoffs und die 1,35-cm-Linie des Wassermoleküls sind Arbeitsgrundlage für die meisten Forschungen. Die Wärmestrahlung benachbarter Planeten wie des Jupiter kann gemessen werden, bei Exoplaneten ist das noch nicht gelungen.

Berechnung

Der von einem Körper abgestrahlte Wärmestrom $ {\dot {Q}} $ kann über das Stefan-Boltzmann-Gesetz wie folgt berechnet werden:

$ {\dot {Q}}={\frac {\partial Q}{\partial t}}=\varepsilon \,\sigma \,A\,T^{4}, $

wobei

$ {\dot {Q}} $: Wärmestrom bzw. Strahlungsleistung
$ \varepsilon $: Emissionsgrad. Die Werte liegen zwischen 0 (perfekter Spiegel) und 1 (idealer Schwarzer Körper).
$ \sigma =5{,}67\cdot 10^{-8}~\mathrm {\frac {W}{m^{2}\,K^{4}}} $: Stefan-Boltzmann-Konstante
$ A $: Oberfläche des abstrahlenden Körpers
$ T $: Temperatur des abstrahlenden Körpers

Gleichzeitig nimmt der Körper Strahlung von seiner Umgebung auf. Befindet sich ein Körper mit der Oberfläche $ A_{1} $ im Austausch mit einem Körper der Oberfläche $ A_{2} $ und haben beide Oberflächen jeweils eine homogene Temperatur $ T_{1} $ und $ T_{2} $ und jeweils einen gleichmäßigen Emissionsgrad $ \varepsilon _{1} $ bzw. $ \varepsilon _{2} $, so ist die von der Fläche $ A_{1} $ abgegebene Wärmeleistung

$ {\dot {Q}}={\dfrac {\sigma (T_{1}^{4}-T_{2}^{4})}{{\dfrac {1-\varepsilon _{1}}{A_{1}\varepsilon _{1}}}+{\dfrac {1}{A_{1}F_{1\rightarrow 2}}}+{\dfrac {1-\varepsilon _{2}}{A_{2}\varepsilon _{2}}}}} $

mit dem Sichtfaktor $ F_{1\rightarrow 2} $.

Ist $ A_{1} $ die Fläche eines Objekts, das von einer viel größeren emissionsfähigen Fläche $ A_{2} $ umgeben ist (z. B. eine Teetasse in einem Büroraum), so vereinfacht sich obige Formel zu

$ {\dot {Q}}=\varepsilon _{1}\sigma A_{1}(T_{1}^{4}-T_{2}^{4}). $

Intensität

Das durch den Satelliten COBE gemessene Spektrum des Mikrowellenhintergrunds entspricht dem eines schwarzen Strahlers mit der Temperatur von 2,725 K. Die Messunsicherheit und die Abweichungen vom theoretischen Verlauf sind geringer als die Strichbreite.

Mit zunehmender Temperatur eines Körpers steigt auch die Intensität seiner Wärmeabstrahlung drastisch an (siehe Stefan-Boltzmann-Gesetz), und das Emissionsmaximum verschiebt sich zu kürzeren Wellenlängen (siehe Wiensches Verschiebungsgesetz). Zur Erläuterung einige Beispiele von Körpern; die Temperaturen verringern sich von Beispiel zu Beispiel um den Faktor 10:

  • Ein Weißer Zwerg: ein Stern mit einer besonders hohen Oberflächentemperatur, hier seien es 57.000 K. Er strahlt pro Flächeneinheit seiner Oberfläche 10.000-mal so viel Leistung ab wie unsere Sonne, das Intensitätsmaximum liegt bei 50 nm, das ist Ultraviolettstrahlung. Das Stefan-Boltzmann-Gesetz liefert eine abgestrahlte Leistung pro Quadratzentimeter von 60 MW – entsprechend einer Leistung eines kleinen Kraftwerkes.
  • Sonnenlicht wird von der 5700 K heißen Oberfläche der Sonne abgestrahlt. Das Intensitätsmaximum liegt bei 500 nm im grünen Bereich des elektromagnetischen Spektrums. Die abgestrahlte Leistung pro Quadratzentimeter beträgt 6 kW – das entspricht etwa der Heizleistung für ein Einfamilienhaus im Winter.
  • Jeder Quadratzentimeter der schwarzen Oberfläche eines 570 K (297 °C) heißen Ofens strahlt nur 1/10.000 der Leistung ab, die ein gleich großes Stück Sonnenoberfläche abstrahlen würde (siehe Stefan-Boltzmann-Gesetz). Das Intensitätsmaximum liegt bei 5 µm, also im Infraroten.
  • Jeder Quadratzentimeter der schwarzen Oberfläche eines 57 K (−216 °C) kalten Körpers strahlt elektromagnetische Wellen ab, deren Leistung 1/10.000 der des gleich großen Stückes Ofenoberfläche entspricht. Das Intensitätsmaximum liegt bei 50 µm im fernen Infrarot.
  • Im Prinzip ändert sich nichts, wenn der Körper auf 5,7 K (−267 °C) tiefgekühlt wird. Die abgestrahlte Leistung sinkt nochmals um den Faktor 10.000 und das Intensitätsmaximum liegt bei 0,5 mm – fast schon im Radarbereich. Mit sehr empfindlichen Empfängern der Radioastronomie kann ein sehr schwaches Rauschen, die kosmische Hintergrundstrahlung, festgestellt werden.

Von diesen fünf Beispielen zur Wärmestrahlung liegt nur der heiße Ofen im Bereich unserer Alltagserfahrung. Das Spektrum eines solchen Ofens mit seinem Maximum im Infrarotbereich ist die Ursache der in der Einleitung erwähnten umgangssprachlichen Einengung der Bedeutung des Begriffs Wärmestrahlung auf den Infrarotbereich. Für bestimmte galaktische Kerne hingegen liegt das Maximum der Strahlung sogar im Röntgenbereich des elektromagnetischen Spektrums.

Einflussnahme verschiedener Körperoberflächen

Die Senderöhre 3-500 C besitzt eine Anode aus Graphit, da die graue Farbe und die raue Oberfläche die Wärme gut abstrahlen.

Einen starken Einfluss auf die abgestrahlte Intensität hat auch die Oberflächenbeschaffenheit des Körpers. Diese wird durch den Emissionsgrad charakterisiert, der bei Spiegeln fast null ist und sein Maximum bei mattschwarzen Oberflächen erreicht. Soll die Temperatur berührungslos durch Thermografie bestimmt werden, kann durch Fehleinschätzung des Emissionsgrades ein gewaltiger Fehler entstehen, wie hier gezeigt wird.

Da das Emissionsmaximum der Wärmeabstrahlung der Erdoberfläche bei einer Wellenlänge von 8 bis 10 µm liegt und zufällig mit dem Absorptionsminimum der Luft zusammenfällt, kühlt sich die Erdoberfläche in klaren Nächten durch Wärmeabstrahlung in den Weltraum ab. Vor allem Wolken und Wasserdampf, in geringerem Maße auch sogenannte Treibhausgase wie Kohlendioxid sind für diese Strahlung intransparent; sie verringern oder verhindern diese Abkühlung durch Reflexion oder Remission (siehe auch Treibhaus, Treibhauseffekt). Die Anteile dieser Gase beeinflussen den Temperaturhaushalt der Erde.

Von besonderer Bedeutung ist in der Physik das Konzept des schwarzen Strahlers, eines Emitters und Absorbers von Wärmestrahlung, der einen Emissions- bzw. Absorptionsgrad von eins hat. Hält man einen solchen Absorber mit einem Thermostat im thermischen Gleichgewicht mit seiner Umgebung, kann man über dessen Wärmeaufnahme die Strahlungsleistung thermischer und nichtthermischer Strahlungsquellen bestimmen.

Wärmestrahlung des Menschen

Manche Materialien wie eingefärbte Polyethylen­folien sind im IR-Bereich transparent, im sichtbaren Bereich aber undurchsichtig.
Bei anderen Materialien wie Glas ist es genau umgekehrt, wie das Brillenglas zeigt.

Wie jede andere Materie mit vergleichbarer Temperatur strahlt der menschliche Körper einen großen Teil der durch die Nahrung aufgenommenen Energie durch thermische Strahlung, hier im Wesentlichen infrarotes Licht, wieder ab. Durch infrarotes Licht kann aber auch Energie aufgenommen werden, wie man beispielsweise bei Annäherung an ein Lagerfeuer erkennt. Die Differenz zwischen emittierter und absorbierter Wärmestrahlung:

$ P_{\text{netto}}=P_{\text{emittiert}}-P_{\text{absorbiert}}\, $

entspricht wegen des Stefan-Boltzmann-Gesetzes einem Unterschied der Temperatur zwischen dem menschlichen Körper und der äußeren Strahlungsquelle:

$ P_{\text{netto}}=A\sigma \varepsilon \left(T^{4}-T_{0}^{4}\right) $

Die gesamte Oberfläche A eines Erwachsenen beträgt etwa 2 m², der Emissionsgrad ε von menschlicher Haut im IR-Bereich ist annähernd 1, unabhängig von der Wellenlänge.[1]

Die Hauttemperatur T liegt bei 33 °C,[2] an der Oberfläche der Kleidung misst man aber nur etwa 28 °C. Bei einer mittleren Umgebungstemperatur von 20 °C[3] errechnet sich ein Strahlungsverlust von

$ P_{\rm {netto}}=100\ \mathrm {W} . $

Neben der Wärmestrahlung verliert der Körper Energie auch durch Konvektion und Verdunstung von Wasser in der Lunge und Schweiß auf der Haut. Eine grobe Abschätzung ergab, dass für einen stehenden Erwachsenen die Wärmeleistung durch Strahlung die durch natürliche Konvektion um einen Faktor zwei übersteigt.[4]

Berechnet man mit Hilfe des Wienschen Verschiebungsgesetzes die mittlere Wellenlänge der abgestrahlten IR-Strahlung, erhält man

$ \lambda _{\text{peak}}={\frac {2{,}898\cdot 10^{6}\,\mathrm {K} \cdot \mathrm {nm} }{305\,\mathrm {K} }}=9{,}50\ \mu \mathrm {m} . $

Wärmebildkameras für thermografische Diagnostik in der Medizin sollen deshalb im Bereich 7–14 µm besonders empfindlich sein.

Anwendungen

Fußbodenheizung unter Keramikfliesen. Der Fotograf saß unmittelbar vor der Aufnahme auf dem Sessel vor dem Laptop.

Beim Auftreffen von Wärmestrahlung auf einen Körper kann

  1. die Strahlung teilweise durchgelassen (transmittiert) werden
  2. die Strahlung teilweise reflektiert werden
  3. die Strahlung teilweise absorbiert, das heißt vom Körper aufgenommen und in Wärme umgewandelt, werden.

Diese drei Effekte werden mit dem Transmissions-, Reflexions-, und Absorptionskoeffizienten quantifiziert.

Der Absorptionskoeffizient gleicht dem Emissionsgrad, d. h., eine hellgraue Oberfläche mit einem Emissions- bzw. Absorptionsgrad von 0,3 absorbiert 30 % der einfallenden Strahlung, emittiert jedoch bei gegebener Temperatur gegenüber einem schwarzen Strahler auch nur 30 % der Wärmestrahlung.

Eloxierte Aluminiumkühlkörper (Wärmeabstrahlung und Konvektion)

Die Wärmeabstrahlung lässt sich durch die Verwendung blanker Metalloberflächen verringern (Beispiele: Metallschichten an Rettungsdecken und Isoliertaschen, Verspiegelungen von Dewargefäßen wie in Thermoskannen und Superisolation).

Um die Wärmeabstrahlung eines metallischen Körpers zu erhöhen, kann man ihn mit einer im relevanten Wellenlängenbereich „dunklen“, matten Beschichtung versehen:

  • Lackierung von Heizkörpern mit nahezu beliebiger Farbe (Kunstharz hat im mittleren Infrarot einen Emissionsgrad nahe eins).
  • Eloxierung von Aluminiumkühlkörpern, um zusätzlich zur Konvektion die Abstrahlung zu verbessern (die Eloxalschicht hat unabhängig von der Farbgebung im mittleren Infrarot einen Emissionsgrad nahe eins)
  • Emaillierung von Ofenrohren und Metallöfen (Emaille, Glas und Keramik haben farbunabhängig im mittleren Infrarot einen Emissionsgrad nahe eins)

Die Farbe solcher Schichten ist für die Wärmeabstrahlung bei üblichen Betriebstemperaturen irrelevant.

Die metallenen Absorber von Sonnenkollektoren werden jedoch mit einer zwar schwarzen Beschichtung (zum Beispiel Titan-Oxinitrid[5]) versehen, die im mittleren Infrarot jedoch reflektiert – sie sollen die Wärmeenergie des sichtbaren Sonnenspektrums aufnehmen und selbst jedoch bei einer Eigentemperatur von über 100 °C möglichst wenig Wärme abstrahlen.

Mit Hilfe von Wärmebildkameras lassen sich unerwünschte Wärmeverluste an Gebäuden aufspüren; im Mauerwerk verborgene Warm- oder Kaltwasserleitungen lassen sich recht genau lokalisieren.

Die Körpertemperatur von Säugetieren ist fast immer höher als die Umgebungstemperatur (außer beispielsweise in der Sauna), weshalb sich die Wärmestrahlung ihres Körpers deutlich von der Umgebungsstrahlung abhebt. Da manche Schlangen mindestens zwei Grubenorgane mit bemerkenswert hoher Temperaturauflösung von bis zu 0,003 K besitzen, können sie auch bei Nacht ihre warmblütige Beute ausreichend genau lokalisieren. Zielsuchsysteme selbstlenkender Raketen-Waffen lösen vergleichbare Aufgaben.

Wissenschaftsgeschichte

Im 18. und frühen 19. Jahrhundert war die Frage, wie thermische Energie übertragen wird, noch nicht abschließend geklärt. Unter anderem gab es die Vorstellung, dass nicht nur Wärme, sondern auch Kälte als Strahlung übertragen werden kann. So führte Benjamin Thompson, der einen bedeutenden Anteil an der Weiterentwicklung der Wärmelehre hatte, mehrfach Experimente durch, deren Ergebnisse die Existenz einer solchen Strahlung nahezulegen schienen. Dazu näherte er der Kugel eines Thermoskops gleichzeitig und in gleicher Entfernung von beiden Seiten zwei Zylinder, „deren einer ebenso viel wärmer, der andere ebenso viel kälter war als die Temperatur der Kugel, und als sich kein merklicher Einfluß zeigte, glaubte Rumford hierin den Beweis zu finden, daß die Kältestrahlen von gleicher Intensität seyen, als die Wärmestrahlen.[6] In einem am 25. Juni 1804 vorgestellten Bericht [7] schilderte er die Wiederholung des Experiments, hauptsächlich zur Beweisführung, „daß es keinen Wärmestoff gebe, sondern dass die diesem beigelegten Phänomene von Wärme- und Kältestrahlen herrühren, wobei er jedoch zugesteht, dass diese auch in Undulationen des Aethers bestehn können, welcher die Molecüle der Körper umgiebt und ihre Repulsion bewirkt.[8]

Pierre Prévost vertrat dagegen bereits 1792 die Auffassung, dass „die stärkeren Wärmestrahlen heißerer Körper die schwächeren [Wärmestrahlen] kälterer [Körper] überwinden“.[9][8] Das heißt, es gibt keine Kältestrahlung sondern nur stärkere oder schwächere Wärmestrahlung. Diese Erkenntnis stellte sich in den nächsten Jahrzehnten als korrekt heraus.

Gustav Kirchhoff formulierte 1859 mit dem Kirchhoffschen Strahlungsgesetz den Zusammenhang zwischen Wärmestrahlung und thermischem Gleichgewicht. Die Eigenschaften der Wärmestrahlung waren dabei zunächst noch unbekannt. Insbesondere macht das Kirchhoffsche Gesetz keine konkrete Aussage darüber, wie die Wärmestrahlung von der Temperatur abhängt. Die Suche nach einer Formel, die diese Lücke der Erkenntnis schließt, stellte sich als fruchtbar für den Fortschritt der Physik heraus. Aus Experimenten und theoretischen Überlegungen fand man mit dem Stefan-Boltzmann-Gesetz und dem Wienschen Verschiebungsgesetz einzelne Eigenschaften der gesuchten Formel. Um 1900 wurde mit dem Wiensches Strahlungsgesetz zunächst eine Näherungsformel für hohe Temperatur und wenige Jahre später mit dem Rayleigh-Jeans-Gesetz eine Näherungsformel für niedrige Temperatur gefunden. Max Planck gelang schließlich die Vereinigung der Aussagen dieser Gesetze zum Planckschen Strahlungsgesetz für schwarze Körper. Bei der Herleitung dieser Formel tat Max Planck, ohne es beabsichtigt zu haben, die ersten Schritte auf dem Weg zur Entwicklung der Quantenmechanik.

Siehe auch

Weblinks

Einzelnachweise

  1. J. Steketee: Spectral emissivity of skin and pericardium, Physics in Medicine and Biology (Phys. Med. Biol.), Volume 18, Nummer 5, 1973.
  2. Abanty Farzana: Temperature of a Healthy Human (Skin Temperature). In: The Physics Factbook. 2001. Abgerufen am 24. Juni 2007.
  3. Lee, B.: Theoretical Prediction and Measurement of the Fabric Surface Apparent Temperature in a Simulated Man/Fabric/Environment System (PDF; 261 kB) Abgerufen am 24. Juni 2007.
  4. DrPhysics.com: Heat Transfer and the Human Body. Abgerufen am 24. Juni 2007.
  5. http://www.bine.info/fileadmin/content/Publikationen/Projekt-Infos/1999/Projekt-Info_05-1999/projekt_0599internetx.pdf BINE Informationsdienst Projektinfo 05/1999: Selektive Absorberbeschichtungen in Solarkollektoren, 4 Seiten, Seite 2, abgerufen 2017-09-24
  6. Johann Samuel Traugott Gehler’s Physikalisches Wörterbuch, Band 1, E. B. Schurckert, 1825, S. 423.
  7. Benjamin Thompson, Mémoires, S. 129.
  8. 8,0 8,1 Johann Samuel Traugott Gehler, op. cit.
  9. Prévost, Pierre: Recherches physico-mecaniques sur la chaleur. Barde, Manget & Cie, Genf 1792.

News mit dem Thema Wärmestrahlung