Die Airy-Formel, benannt nach dem Mathematiker und Astronom George Biddell Airy, gibt den Verlauf der transmittierten Intensität elektromagnetischer Strahlung in einem Fabry-Pérot-Interferometer an, in Abhängigkeit vom Verhältnis der Wellenlänge oder Frequenz der Strahlung zum freien Spektralbereich des Interferometers.
Die Airy-Formel ergibt sich, wenn man die elektrischen Felder aller im Interferometer umlaufenden Teilwellen phasen- und amplitudenrichtig addiert.
Die Intensität der im Interferometer umlaufenden Strahlen ist proportional zur transmittierten Intensität. Bei der Berechnung muss die nicht-ideale Reflexion an den beiden Endspiegeln mit dem Amplituden-Reflexionskoeffizienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r \neq 1 berücksichtigt werden. Er ist über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r^2 + t^2 = 1 mit dem Amplituden-Transmissionskoeffizienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t verknüpft. Nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m Umläufen, also $ 2m $ Reflexionen, ist der Betrag des elektrischen Feldes um den Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r^{2m} kleiner.
Während eines Umlaufs, d. h. wenn eine Teilwelle das Interferometer einmal hin und zurück durchlaufen hat, akkumuliert diese einen Phasenwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 \varphi (also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 \varphi pro zurückgelegter Resonatorlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L ). Diese Phase hängt ab
Dies lässt sich auch ausdrücken als Verhältnis von Lichtfrequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \nu zum freien Spektralbereich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta\nu = \frac{c}{2nL} (Einheit Frequenz) des Fabry-Pérot-Interferometers:
Die elektrische Feldstärke $ E $ im Innern des Resonators ist
mit der Feldstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_i des einfallenden Lichts.
In der obigen Rechnung wurde nach einer Indexverschiebung die geometrische Reihe ausgewertet. Das Betragsquadrat dieses Ausdrucks ergibt mit verschiedenen trigonometrischen Identitäten die Airy-Formel:
In dieser Intensitätsdarstellung werden verwendet: