Airy-Formel

Airy-Formel

Datei:Airy Formula.svg
Die Airy-Formel gibt die Transmission eines Fabry-Pérot Interferometers (FPI) an. Für höhere Finessen $ {\mathcal {F}} $ wird nicht-resonantes Licht besser unterdrückt. Die Linienbreite $ \delta $ ist für große Finessen näherungsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\Delta\nu}{\mathcal{F}} mit dem Freien Spektralbereich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta\nu .

Die Airy-Formel, benannt nach dem Mathematiker und Astronom George Biddell Airy, gibt den Verlauf der transmittierten Intensität elektromagnetischer Strahlung in einem Fabry-Pérot-Interferometer an, in Abhängigkeit vom Verhältnis der Wellenlänge oder Frequenz der Strahlung zum freien Spektralbereich des Interferometers.

Die Airy-Formel ergibt sich, wenn man die elektrischen Felder aller im Interferometer umlaufenden Teilwellen phasen- und amplitudenrichtig addiert.

Herleitung

Die Intensität der im Interferometer umlaufenden Strahlen ist proportional zur transmittierten Intensität. Bei der Berechnung muss die nicht-ideale Reflexion an den beiden Endspiegeln mit dem Amplituden-Reflexionskoeffizienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r \neq 1 berücksichtigt werden. Er ist über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r^2 + t^2 = 1 mit dem Amplituden-Transmissionskoeffizienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t verknüpft. Nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m Umläufen, also $ 2m $ Reflexionen, ist der Betrag des elektrischen Feldes um den Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r^{2m} kleiner.

Während eines Umlaufs, d. h. wenn eine Teilwelle das Interferometer einmal hin und zurück durchlaufen hat, akkumuliert diese einen Phasenwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 \varphi (also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 \varphi pro zurückgelegter Resonatorlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L ). Diese Phase hängt ab

  • vom Verhältnis der Resonatorlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L zur Wellenlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda des Lichts sowie
  • vom Brechungsindex $ n $ des Mediums zwischen den Endspiegeln.

Dies lässt sich auch ausdrücken als Verhältnis von Lichtfrequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \nu zum freien Spektralbereich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta\nu = \frac{c}{2nL} (Einheit Frequenz) des Fabry-Pérot-Interferometers:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi = n \frac{2 \pi L}{\lambda} = 2 \pi \frac{\nu}{\Delta \nu} = -2 \pi \frac{\lambda}{\Delta \lambda}

Die elektrische Feldstärke $ E $ im Innern des Resonators ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} E &= E_\mathrm{i}t\left(1+\sum_{m=1}^{m=\infty}r^{2m}\exp \left( 2im\varphi\right) \right) \\ &= E_\mathrm{i} \frac{\sqrt{1 - r^2}}{1 - r^2 \exp \left( 2i \varphi \right)} \end{align}

mit der Feldstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_i des einfallenden Lichts.

In der obigen Rechnung wurde nach einer Indexverschiebung die geometrische Reihe ausgewertet. Das Betragsquadrat dieses Ausdrucks ergibt mit verschiedenen trigonometrischen Identitäten die Airy-Formel:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} I = E \cdot E^* &= \frac{I_\mathrm{i}}{1-R}\cdot\frac{1}{1+\left(\frac{2\sqrt{R}}{1-R}\right)^2\sin^2(\varphi)}\\ &= \frac{I_\mathrm{max}}{1+ \left( \frac{2 \mathcal{F}}{\pi} \right) ^2 \sin^2(\varphi)} \end{align}

In dieser Intensitätsdarstellung werden verwendet:

  • der Reflexionskoeffizient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R=r^2
  • der Transmissionskoeffizient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T=t^2
  • die Finesse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal{F} = \frac{\pi \sqrt{R}}{1 - R} .

Siehe auch