Dieser Artikel erläutert die Einstein-Smoluchowski-Beziehung in der kinetischen Gastheorie. Für weitere Bedeutungen – siehe Einstein-Gleichung.
Die Einstein-Smoluchowski-Beziehung, auch Einstein-Gleichung genannt, ist eine Beziehung im Bereich der kinetischen Gastheorie, die zuerst von Albert Einstein (1905) und danach von Marian Smoluchowski (1906) in seinen Schriften zur Brownschen Bewegung aufgedeckt wurde. Sie verknüpft den Diffusionskoeffizienten $ D $ mit der Beweglichkeit $ \mu $ der Teilchen:
- $ D=\mu \cdot k_{\mathrm {B} }\cdot T $
Darin bezeichnet
Es handelt sich um ein frühes Beispiel für eine Fluktuations-Dissipations-Beziehung.
Diffusion von Teilchen
In Bereichen mit niedriger Reynolds-Zahl ist die Beweglichkeit der Kehrwert des Strömungskoeffizienten $ \gamma $:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu = \frac{1}{\gamma}
Die Stokessche Gleichung liefert für kugelförmige Teilchen mit Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r
:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma = 6 \pi \cdot \eta \cdot r
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta
die Viskosität des Mediums bezeichnet.
Damit lässt sich die Einstein-Gleichung umformen in:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Rightarrow D = \frac{k_\mathrm{B} \cdot T}{6 \pi \cdot \eta \cdot r}
Diese Form wird auch Stokes-Einstein-Gleichung genannt.
Sie kann z. B. genutzt werden, um den Diffusionskoeffizienten eines globulären Proteins in wässriger Lösung zu bestimmen: wenn wir eine Dichte von ca. 1,2 · 103 kg/m³ annehmen, erhalten wir für ein Protein von 100 kDa: $ D\approx 10^{-10}\,\mathrm {m^{2}/s} $.
Elektrische Leitfähigkeit
Bezogen auf die elektrische Leitfähigkeit definiert man zunächst die Elektronenbeweglichkeit:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu = \frac{v_\mathrm d}{E}
wobei
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E
die elektrische Feldstärke ist und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_\mathrm d
die Driftgeschwindigkeit.
Für einen Halbleiter mit beliebiger Zustandsdichte teilt man für gewöhnlich den rechten Teil der Gleichung durch die Ladung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q
des Ladungsträgers. Dann lautet die Einstein-Gleichung
- $ D={\frac {\mu \cdot p}{q\cdot {\frac {\mathrm {d} p}{\mathrm {d} \eta }}}} $
mit
- dem chemischen Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta
und
- der Teilchenzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p
.
Diese Beziehung gilt ebenso für die Beweglichkeit von Ionen. Somit wird die Einstein-Gleichung zur „Nernst-Einstein-Beziehung“:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Rightarrow D = \frac{\mu \cdot k_\mathrm{B} \cdot T}{q}
Literatur
- A. Einstein: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. In: Annalen der Physik. Band 322, Nr. 8, 1905, S. 549–560, doi:10.1002/andp.19053220806 (freier Volltext).
- M. von Smoluchowski: Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. In: Annalen der Physik. Band 326, Nr. 14, 1906, S. 756–780, doi:10.1002/andp.19063261405 (freier Volltext).