Die Sojus-Rakete [sʌˈjus] ({{Modul:Vorlage:lang}} Modul:ISO15924:97: attempt to index field 'wikibase' (a nil value) ‚Union‘, ‚Vereinigung‘) ist eine der Weiterentwicklungen der weltweit ersten Interkontinentalrakete, der R-7, die am 15. Mai 1957 zu ihrem ersten Flug startete.
Die erste offizielle Weltraummission hatte die R-7 am 4. Oktober 1957 mit Sputnik 1 an Bord. Durch die ständige Weiterentwicklung entstanden viele Varianten der R-7, die zudem immer leistungsfähiger und zuverlässiger wurden. Eine der bekanntesten Varianten der R-7 ist die Sojus. Sie entstand durch leichte Modifizierungen der Woschod-Rakete, mit der anfänglichen Aufgabe, bemannte Sojus-Raumschiffe zu starten. Dabei waren die Unterschiede zwischen beiden Raketen so gering, dass einige Autoren die Woschod ebenfalls zu der Sojus-Reihe rechnen. Der Erststart der Sojus fand am 28. November 1966 statt (die Woschod flog bereits seit 1963). Seitdem wurde die Rakete zum Starten von unterschiedlichsten Nutzlasten verwendet, darunter waren unter anderem alle bemannten Sojus-Raumschiffe, Progress-Raumtransporter, niedrigfliegende Forschungs- und Militärsatelliten und seit dem Jahr 1999 mit zusätzlichen Ikar- oder Fregat-Oberstufen auch ESA-Raumsonden und kommerzielle Satelliten.
Heute ist die Sojus-Rakete die meistgeflogene orbitale Rakete der Welt mit insgesamt mehr als 850 Flügen und eine der erfolgreichsten mit einer Zuverlässigkeitsquote von 97,5 %. Außerdem ist sie die einzige aktive Trägerrakete der Russischen Föderation, die für den bemannten Raumflug zugelassen ist. Kommerziell wird die Rakete von der Firma Starsem vermarktet, die sie seit dem 21. Oktober 2011 (Erster Start: Sojus ST-B VS-001 mit 2 Galileo-Satelliten) auch von dem europäischen Weltraumbahnhof in Kourou, Französisch-Guayana, starten lässt.
Die erste Stufe der Sojus besteht aus vier Boostern mit jeweils vier Brennkammern und pro Brennkammer eine Düse (RD-107). Diese sind jeweils 19,6 m lang, besitzen einen Maximaldurchmesser von 2,68 m und wiegen leer etwa 3,5 t und beim Start 44,5 t. Die zweite Stufe ist den Boostern in Aufbau sehr ähnlich, besitzt aber einen verlängerten Tank und ein modifiziertes, für den Betrieb im Weltraum optimiertes Triebwerk (RD-108). Dadurch konnte man eine Neuentwicklung der Brennkammer für höheren Druck und höhere Temperaturen vermeiden. Der Zentralblock ist 27,8 m lang und besitzt einen Durchmesser von maximal 2,95 m, eine Leermasse von 6,9 t und eine Masse beim Start von 104,5 t. Da man anfangs noch keine Erfahrungen mit im Flug zündenden Stufen hatte, wurden beide Stufen einfach gleichzeitig gestartet, wobei alle fünf Haupt- und zwölf Steuertriebwerke (jeweils zwei an den vier Boostern RD-107 und vier am RD-108) zünden. Die Triebwerke der ersten beiden Stufen verbrennen Kerosin und flüssigen Sauerstoff (LOX). Nach zwei Minuten ist der Treibstoff der Booster verbraucht und diese werden abgeworfen, der Treibstoffvorrat der Hauptstufe versorgt diese noch etwa weitere 2,5 Minuten. Die Triebwerke wurden laufend in ihrer Leistung gesteigert, und tragen bei der aktuellen Sojus-FG die Bezeichnungen RD-107A und RD-108A. Die zweite Stufe (der Zentralbooster) wird auch als Block A bezeichnet, die vier Booster der ersten Stufe als Block B, W, G und D (nach den Anfangsbuchstaben des kyrillischen Alphabets: А, Б, В, Г, Д).
Die dritte Stufe der Sojus wird von dem RD-0110-Triebwerk mit 298 kN Schub angetrieben, das ebenfalls Kerosin und flüssigen Sauerstoff (LOX) verbrennt. Die Stufe wird als Block I (russ. И) bezeichnet. Sie wird mit der zweiten Stufe der Rakete, dem Kernblock A (engl. als Core bezeichnet), durch einen Gitterrohradapter verbunden und wird zwei Sekunden vor dem Brennschluss des Blocks A gezündet, was man als heiße Stufentrennung bezeichnet und die Hauptstufe von der Drittstufe wegdrückt. Dazu ist ein Ablenkkonus aus Titan auf dem Ende der Hauptstufe installiert. Die dritte Stufe hat eine Länge von 6,74 m, einen Durchmesser von 2,66 m und wiegt leer 2,36 t und beim Start etwa 25 t. Die Brenndauer beträgt 250 s.
Bei bemannten Einsätzen trägt die Sojus zusätzlich ein Rettungssystem (russisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), САС; zu deutsch SAS) für Kosmonauten mit sich. Das System besteht aus einem Komplex von Feststoffraketen das oben an der Sojus angebracht ist. Bei einem Fehlstart werden sie gezündet und tragen die Kabine mit den Kosmonauten innerhalb kürzester Zeit aus der Gefahrenzone. Am 26. September 1983 kam bisher einmalig das Rettungssystem zum Einsatz, als eine Sojus-U direkt auf dem Starttisch explodierte. Das Rettungssystem rettete die Besatzung des Sojus-T-10-1-Raumschiffs nur Sekunden vor der Explosion. Zu diesem System gehören auch die vier auffälligen rechteckigen Bauteile an den Seiten der Nutzlastverkleidung. Diese sogenannten Gitterflossen klappen bei Aktivierung des Rettungssystems aus und dienen der aerodynamischen Stabilisierung. Kleine Feststoffraketen an der äußersten Spitze dienen der Trennung der Nutzlastverkleidung vom Raumschiff. Bei einem normalen Startverlauf wird das Rettungssystem etwa 150 s nach dem Start abgeworfen.
Startanlagen für die Sojus-Rakete existieren einerseits in Plessezk sowie Wostotschny (Russland) und Baikonur (Kasachstan), seit Oktober 2011 sind Sojus-Starts auch in Französisch-Guayana (Südamerika) möglich. Das Centre Spatial Guyanais liegt in für Satellitenstarts günstiger Äquatornähe, was dem Sojus-System dort bei gleicher Konfiguration eine höhere Nutzlast ermöglicht. Bemannte Raumflüge sind weiterhin auf den Startplatz Baikonur beschränkt, da das Sojus-Raumschiff bisher nur Notlandungen auf dem Festland beherrscht. Starts von Französisch-Guayana aus führen hingegen über den Atlantik.
Im Laufe der Jahre entstanden mehrere Versionen der Sojus-Rakete. Sie unterschieden sich in den eingesetzten Triebwerken, Nutzlastverkleidungen und Treibstoffen. Alle Versionen verfügten über drei Stufen und wurden zum Befördern von Nutzlasten in niedrige Umlaufbahnen verwendet. Erst ab Ende der 1990er wurde bei der Sojus eine vierte Stufe zum Erreichen von höheren Orbits eingesetzt, da die bisher für diese Aufgabe verwendete vierstufige Molnija nicht flexibel genug war. Die Oberstufen der Sojus werden im eigenen Abschnitt behandelt.
Um kommerzielle Satelliten sowie Raumsonden auf hohe Umlaufbahnen bringen zu können, wurde der Sojus eine vierte Raketenstufe hinzugefügt. Die vierte Stufe wird zusammen mit der Nutzlast von der Nutzlastverkleidung umhüllt.
Die Ikar-Stufe wurde von dem Antriebsmodul des russischen Kometa- bzw. Jantar-1-Aufklärungssatelliten abgeleitet und genutzt, um mit der Sojus-U Globalstar-Satelliten zu starten. Dabei wurden 1999 bei sechs Flügen 24 Globalstar-Satelliten ins All gebracht, jeweils vier Stück pro Flug. Sojus-U/Ikar ist 308 t schwer und 47,285 m hoch. Ab 2000 wurde die Ikar durch die neue und leistungsfähigere Fregat ersetzt.
Die Fregat-Stufe wurde von dem Antriebsmodul der Raumsonden Fobos und Mars 96 abgeleitet und ist mit einem modernen digitalen Steuerungssystem ausgestattet. Sie wird vom russischen Unternehmen Lawotschkin gebaut. Fregat kann bis zu zwanzigmal wiedergezündet werden und ist somit ideal zum Aussetzen mehrerer Satelliten in verschiedenen Umlaufbahnen. Diese Tatsache wurde von der ESA genutzt, als sie eine Trägerrakete für ihre Cluster-Satelliten suchte. Der erste Start einer Sojus-U/Fregat fand am 8. Februar 2000 statt. Nach einem weiteren Testflug wurden bei zwei Sojus-U/Fregat-Flügen erfolgreich vier Cluster-Satelliten ins All gebracht. Dabei konnte Fregat ihre Leistungsfähigkeit und Zuverlässigkeit beweisen, als sie nach einem zu frühen Abschalten der dritten Stufe der Sojus die Steuerung des Fluges rechtzeitig übernahm und durch ihre überschüssige Treibstoffladung die Mission doch noch retten konnte. Seitdem wird die Sojus mit der Fregat-Stufe zum Starten von Raumsonden (Mars Express) und kommerziellen Nutzlasten genutzt. Seit 2003 wird Fregat ebenfalls auf der Sojus FG und ab 2006 auch der neuen Sojus-2-Rakete eingesetzt. Außerdem soll Sojus-Fregat die bereits veraltete Molnija-Rakete ersetzen, die ebenfalls über vier Stufen verfügt und hochfliegende Satelliten startet. Die Sojus-U/Fregat ist 308 t schwer, 46,645 m hoch und kann von Baikonur aus bis zu 2100 kg in den Geotransferorbit oder bis zu 1260 kg auf eine Transferbahn zum Mars bringen.
Seit 1992 wurde in Russland das Projekt der „Rus“-Rakete (russisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)) verfolgt, die eine Weiterentwicklung der Sojus-U darstellt und über eine Nutzlastkapazität von etwa 7,5 t für den erdnahen Orbit verfügt. Sie sollte nicht mit der neuen Rus-M verwechselt werden, die eine komplette Neuentwicklung darstellt. Die Rus sollte ein digitales Flugsteuerungssystem erhalten, das das alte, aus den 1960ern stammende, analoge Steuerungssystem ersetzen sollte. Dadurch wäre eine flexiblere Flugplanung und eine effizientere Treibstoffnutzung möglich, was der Nutzlastkapazität der Rakete zugutekäme. Außerdem sollte die Rakete eine modifizierte Drittstufe (Block I) mit einem neuen RD-0124-Triebwerk (Schub 30 kN, Spezifischer Impuls 3.522 Ns/kg bzw. 359 s) erhalten und die Triebwerke der ersten und zweiten Stufe sollten durch die verbesserten RD-107A und RD-108A ersetzt werden. Später erhielt die Rus die Bezeichnung Sojus-2. Da jedoch in der russischen Raumfahrtkasse das Geld fehlte, lief die Entwicklung der Sojus-2 in den 1990ern nur sehr zögernd.
Die Wende kam, als in Kooperation mit Arianespace die Firma Starsem gegründet wurde, die die Sojus im Westen zum Start von kommerziellen Satelliten anbot. Bald kamen die ersten Startaufträge und damit auch Geld in die Kassen, das zur Weiterentwicklung der Sojus verwendet werden konnte. Die ursprünglichen Pläne von Starsem sahen vor, ab 2002 eine Sojus-U, die mit einem digitalen Steuerungssystem und mit den RD-107A- und RD-108A-Triebwerken in der ersten und der zweiten Stufe ausgestattet ist, unter der Bezeichnung Sojus-ST anzubieten. Außerdem sollte die Sojus-ST über eine größere und geräumigere Nutzlastverkleidung (ST-Typ, Ø 4,11 m, Länge 11,433 m) verfügen. Die ST-Nutzlastverkleidung entspricht weitgehend in Größe und Form der Nutzlastverkleidung der Ariane 4.[4] Des Weiteren war geplant, dass sie eine neue Oberstufe, genannt Fregat, zum Erreichen von hohen Orbits einsetzen können sollte. Eine Sojus-ST mit dem neuen RD-0124-Triebwerk in der dritten Stufe sollte Sojus-ST+ heißen.
An Stelle von Sojus-ST kam 2001 die Sojus-FG zum Einsatz, die sich von der gewöhnlichen Sojus-U nur durch die RD-107A- und RD-108A-Triebwerke in den ersten beiden Stufen unterschied. Sie wird nun zum Starten bemannter Raumschiffe und Raumtransporter verwendet. Außerdem wurde die Fregat-Stufe in Verbindung mit der Sojus-U und später auch mit der Sojus-FG getestet und mehrfach erfolgreich eingesetzt. Weiterhin wurde für kommerzielle Starts eine neue Nutzlastverkleidung (S-Typ, Ø 3,715 m, Länge 7,7 m) eingeführt, die beispielsweise bei den Starts der Raumsonden Mars Express und Venus Express zum Einsatz kam.
Am 8. November 2004 startete erfolgreich die Sojus-2.1a, die die nächste Entwicklungsstufe auf dem Weg zur Sojus-2 darstellte. Sie verfügte nun über das digitale Flugsteuerungssystem und eine an das RD-0124 angepasste Drittstufe, die allerdings noch von einem älteren RD-0110 angetrieben wurde. Ein weiterer Sojus-2.1a-Start fand am 19. Oktober 2006 statt, als der europäische Wettersatellit MetOp-A unter Nutzung einer Fregat-Stufe und einer ST-Typ-Nutzlastverkleidung ins All gebracht wurde. Die Sojus-2.1b ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)), die den ehemaligen Planungen der Sojus-2 entspricht, startete am 27. Dezember 2006 zum ersten Mal in Baikonur mit dem COROT-Weltraumteleskop. Seit 2011 bzw. 2012 starten Sojus-2.1a und Sojus-2.1b auch von Kourou für kommerzielle Missionen.
Die Nutzlastkapazität der Sojus-2.1a beträgt bei einem Start von Baikonur bis zu 7.020 kg in einen 200 km hohen Orbit und bei einem Start von Plessezk bis zu 6.830 kg in einen 220 km hohen Orbit. Sojus-2.1b kann von Baikonur aus bis zu 8.250 kg in einen 200 km hohen Orbit und von Plessezk aus bis zu 7.020 kg in einen 220 km hohen Orbit befördern. Die Nutzlastkapazität der Sojus-ST bei einem Start von Kourou aus dürfte noch um einiges höher liegen.
Die Sojus-2.1b verwendet ein verbessertes Triebwerk (RD-0124), das die Leistung der zweiten Stufe erhöht. Diese Sojus-Version wurde erstmals von Plessezk aus am 26. Juli 2008 mit militärischer Fracht gestartet.[5]
Seit 2006 gibt es Gespräche über eine Weiterentwicklung der Sojus-2 Rakete die Anfangs als Sojus-1 später als Sojus-2.3 bezeichnet wurde. Diese soll in der Zentralstufe ein Kusnezow-NK-33-Triebwerk einsetzen und ähnelt somit dem Jamal/Aurora-Konzept (siehe dazu den entsprechenden Abschnitt dieses Artikels). Dieses Triebwerk stammt von der russischen Rakete N1, die ursprünglich für Mondflüge vorgesehen war. Die LEO-Nutzlastkapazität der Sojus-2.3 wird mit 11 t von Baikonur/Plessezk aus und 12,7 t von Kourou aus angegeben. Durch den Einsatz einer wasserstoffbetriebenen Dritt- und/oder Oberstufe kann die Nutzlastkapazität der Rakete noch weiter gesteigert werden.[6]
Der erste Schritt in diese Richtung ist die Sojus 2.1w (Союз-2.1в). Sie ist eine auf der Basis des Zentralblocks der Sojus entwickelte neue Trägerrakete für kleinere Nutzlasten bis 2,8 t. Sie besteht nur aus zwei Stufen, wobei die erste gegenüber der zweiten Stufe des traditionellen Sojus verlängert und im Durchmesser vergrößert ist und ein NK-33 als Triebwerk verwendet. Die zweite Stufe wurde von der Sojus 2.1b übernommen. Als Oberstufe kommt die ebenfalls neu entwickelte Wolga zum Einsatz, die für kleinere Nutzlasten optimiert ist, für die eine Fregat-Oberstufe überdimensioniert wäre. Sie arbeitet mit UDMH und N2O4 als Oxidator, wiegt je nach Treibstoffzuladung bis zu 1740 kg, hat einen Durchmesser von 3,2 m und eine Höhe von 1,025 m.[7]
Der Erstflug der Sojus 2.1w wurde über Monate hinweg, vor allem wegen Problemen mit der Betankungsanlage der modifizierten Startrampe, mehrmals verschoben und fand endgültig am 28. Dezember 2013 statt.[8]
Auf der Basis der Sojus sind mehrere Projekte neuer leistungsstärkerer Raketen entstanden. Wegen Finanzierungsproblemen und/oder Mangel an Anwendungsgebieten sind diese Projekte bisher nicht verwirklicht worden. Hier sollen die Bekanntesten davon beschrieben werden.
Jamal (russisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), englisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value); benannt nach der Jamal-Halbinsel im Nordwesten Sibiriens) ist das Projekt einer weitgehend auf der Sojus basierenden Trägerrakete, die 1996 von RKK Energija zur Realisierung vorgeschlagen wurde. Dabei setzten sich die Entwickler das Ziel, die Nutzlastkapazität drastisch zu erhöhen, ohne jedoch die äußeren Formverhältnisse der Rakete zu verändern, um so die Startanlagen der Sojus weiterhin nutzen zu können. Zudem sollte zur Herstellung der Jamal möglichst auf bereits vorhandene Produktionsanlagen zurückgegriffen werden können. Ihren Namen erhielt die Rakete von den Jamal-Kommunikationssatelliten des russischen Erdgaskonzerns Gazprom, die mit der neuen Rakete gestartet werden sollten (Start erfolgte 1999 mit einer Proton).
Die erste Stufe der Jamal (Booster) wird weitgehend unverändert von der Sojus-U übernommen. Die zweite Stufe (Zentralstufe) wird mit einem einzelnen NK-33 Triebwerk angetrieben. NK-33 ist ein Triebwerk der sowjetischen Mondrakete N1, die gleichzeitig mehrere davon einsetzte. Die Triebwerke werden nicht mehr produziert, es sind jedoch noch etwa 30 Stück von dem N1-Programm übrig geblieben. Für den erneuten Einsatz wurden die gelagerten Triebwerke eingehend getestet und erhielten zudem einige Modifikationen: so wurde zum Beispiel der Innendruck erhöht und das Triebwerk wurde schwenkbar gelagert. Zusätzlich zum Einbau des NK-33 wurde der Durchmesser des Zentralblocks der Rakete auf maximal 3,44 m erhöht (in der Sojus – 2,66 m) und dessen Treibstoffzuladung bis auf 141 t (50 t mehr als in der Sojus) angehoben. Der Durchmesser der dritten Stufe wurde ebenfalls erhöht, was eine Treibstoffzuladung von 30 t erlaubte. Die Stufe sollte von einem RD-0124 angetrieben werden, das auch bei der Sojus-2 verwendet wird. Außerdem sollte die Rakete eine vierte Stufe mit dem Namen Taimyr (russisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)) erhalten, die von dem Blok-D der Proton-Rakete abgeleitet wird. Gleichzeitig sollte die Rakete eine neue und größere Nutzlastverkleidung erhalten.
Die Startmasse der Jamal sollte 374 t betragen, somit konnte sie von den Startanlagen der Sojus in Baikonur und Plessezk gestartet werden, die Raketen mit maximaler Masse von 400 t tragen können. Die Nutzlastkapazität wird mit 11,8 t in einen 200 km hohen Orbit von Baikonur aus, 11,3 t in einen 200 km hohen Orbit von Plessezk aus und 1,36 t in den GEO angegeben.
Obwohl die Rakete mit relativ geringen Modifikationen und bereits fertigen, von der N1 übrig gebliebenen NK-33 Triebwerken entwickelt werden konnte, fehlte dafür das Geld, so dass Jamal in dieser Konfiguration bisher nicht verwirklicht wurde. Bereits 1999 entstand auch das Projekt der Aurora, einer Exportvariante der Jamal.
Aurora ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) ‚Morgenröte‘) ist eine Variante der Jamal, die 1999 zum ersten Mal vorgestellt wurde. Aurora sollte von einer neuen Startanlage auf der zu Australien gehörigen Weihnachtsinsel im Indischen Ozean starten, zuvor sollten Testflüge von Baikonur aus erfolgen. Die Kosten für den Bau der Anlage und der Infrastruktur wurden mit etwa 500 Millionen US-Dollar beziffert und sollten von privaten Investoren getragen werden. Aurora sollte vornehmlich zum Start von kommerziellen Kommunikationssatelliten im mittleren Massesegment eingesetzt werden. Nach einigen vorbereitenden Arbeiten wurde die Finanzierung des Projekts jedoch wieder eingestellt. Durch den Verfall des Satellitenstartmarktes ist es nun auch unwahrscheinlich, dass Aurora jemals wieder ins Leben gerufen wird.
Aurora unterscheidet sich nur geringfügig von Jamal: die wichtigsten Unterschiede sind ein verbessertes NK-33-1 Triebwerk in der Zentralstufe sowie eine noch geräumigere Nutzlastverkleidung. NK-33-1 ist eine Variante des NK-33, die über eine ausfahrbare Düse verfügt. Die Düse wird in etwa 10 km Höhe ausgefahren und ermöglicht so das Triebwerk an verschiedene Phasen des Flugs besser anzupassen. Allein dadurch wird die Nutzlastkapazität der Rakete um etwa 2 % gesteigert. Zusätzlich zum NK-33-1 sollte in der Zentralstufe ein mit vier Brennkammern ausgestattetes RD-0124R Triebwerk zur Steuerung der Rakete eingebaut werden. Dies ist eine Variante des RD-0124 der dritten Stufe der Sojus-2/Jamal Rakete. Da sich diese Art von Steuerung als technisch schwer realisierbar erwies, entschied man RD-0124R nicht zu entwickeln und stattdessen das NK-33-1 Triebwerk schwenkbar einzusetzen, wozu man das Kreuzgelenk des RD-0120 Triebwerks der Energija-Rakete verwendete. In der ersten Stufe (Booster) sollten RD-107A Triebwerke der Sojus-FG eingesetzt und die dritte Stufe sollte von einem RD-0154 angetrieben werden. RD-0154 ist eine Variante des RD-0124 mit einer Brennkammer, das Triebwerk ist schwenkbar gelagert und verfügt über eine ausfahrbare Düse. Als vierte Stufe war mit Korwet (russisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), englisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) ‚Korvette‘) ähnlich wie bei Jamal eine von dem Block D der Proton-Rakete abgeleitete Stufe geplant, die von einem 11D58MF Triebwerk angetrieben werden sollte. Leermasse der Korwet-Stufe beträgt 1.649 kg, Treibstoffzuladung 10 t. Die Rakete sollte sowohl in dreistufiger (niedrige Umlaufbahnen) als auch in vierstufiger Konfiguration (hohe Umlaufbahnen) fliegen. Die Startmasse der vierstufigen Variante sollte 379 t betragen.
Durch die Verbesserungen an der Rakete und das Verlegen des Startplatzes näher an den Äquator steigt die Nutzlastkapazität der Aurora auf 11.860 kg in einen 200 km Orbit mit einer Bahnneigung von 11,3°, 4.350 kg in den Geotransferorbit und 2.600 kg in den geostationären Orbit.
Onega (russisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), benannt nach dem Fluss Onega) wurde 2004 von RKK Energija als der zukünftige Träger für das neue bemannte Raumschiff Kliper vorgeschlagen. Ihre Nutzlastkapazität wird mit etwa 14,5 t für den erdnahen Orbit und 1,6 t für GEO (andere Quellen geben 2,3 t an) bei einem Start von Plessezk aus angegeben. Die erste Stufe (Booster) soll von einem neu zu entwickelnden RD-0155 Triebwerk angetrieben werden, das über eine Brennkammer verfügt und flüssigen Sauerstoff mit Kerosin verbrennt. Nach anderen Angaben könnten die Booster auch mit RD-120.10F (11D123) Triebwerken, die ebenfalls in der zweiten Stufe der Zenit Verwendung finden, angetrieben werden. Die Zentralstufe soll im Gegensatz zu Jamal/Aurora nicht mit einem NK-33, sondern mit einem RD-191, dem Haupttriebwerk der Angara, angetrieben werden. Beide Triebwerke sind jedoch in ihren Leistungsdaten ziemlich ähnlich. Die Rakete verfügt über eine hochenergetische mit flüssigem Sauerstoff und flüssigem Wasserstoff (LOX/LH2) betriebene dritte Stufe mit dem RD-0146 Triebwerk. Auch die vierte Stufe namens Jastreb (russisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) ‚Habicht‘, englisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)) für Einsätze in hohe Orbits wird mit LOX/LH2 betrieben. Diese Stufe verwendet ein RD-0126 oder ein RD-0126E (eine Variante des RD-0126 mit einer modifizierten Düse) Triebwerk. Die Startmasse der Onega soll 376 t betragen. Bei einem Start der Onega mit Kliper würde eine dreistufige Version ohne Nutzlastverkleidung eingesetzt werden, wobei Kliper auf die Spitze der Rakete aufgesetzt wird. Da Onega die erste in Plessezk startende Rakete wäre, die als Treibstoff flüssigen Wasserstoff einsetzt, wird bei ihrer Realisierung als eins der größten Probleme das Fehlen von Infrastruktur zur Erzeugung/Verarbeitung des flüssigen Wasserstoffs in Plessezk genannt.
Da im Laufe des Jahres 2004 die russische Raumfahrtbehörde eine Angara-Rakete oder in Kooperation mit der Ukraine eine Zenit-Rakete für den Transport von Kliper bevorzugte, wurde das Projekt der Onega bis auf weiteres auf Eis gelegt. Nachdem die europäische Raumfahrtbehörde ESA Mitte 2005 ihr Interesse am Kliper bekundete, war Onega bzw. eine ähnliche Rakete mit einem NK-33-1 in der Zentralstufe, RD-120.10F in den Boostern und RD-0146E in der dritten Stufe unter der Bezeichnung Sojus-3 als Träger wieder im Gespräch, denn sie würde einen Start des Raumschiffs vom europäischen Weltraumbahnhof in Kourou erlauben, wo derzeit sowohl Startanlagen für die Sojus-2-Rakete entstehen als auch bereits eine LH2-Infrastruktur für die Ariane 5 existiert. Bei der Versammlung des Europäischen Weltraumrates im Dezember 2005 wurden jedoch keine finanziellen Mittel für Kliper genehmigt.
Ende 2004 einigten sich die ESA und die russische Raumfahrtbehörde Roskosmos darauf, ab 2009 Sojus-Raketen von der neuzubauenden Startrampe ELS auf dem europäischen Weltraumbahnhof Centre Spatial Guyanais bei Kourou in Französisch-Guayana zu starten. Dabei soll Sojus-2 mit einer größeren Nutzlastverkleidung (ST-Typ) unter dem Namen Sojus-ST kleinere Nutzlasten, für die die Ariane 5 zu groß ist, ins All befördern. Sowohl Sojus-2.1a- als auch Sojus-2.1b-Versionen sollen dabei verwendet werden. Die Rakete selbst wurde für den Einsatz in Kourou leicht modifiziert. So soll die Sojus mit einem bei Alcatel Alenia Space gebauten Sicherheitssystem ausgestattet werden, welches die Triebwerke der Rakete bei einem Notfall von der Erde aus abschalten kann.[9] Weiterhin wurden die vier Booster mit Flutventilen versehen, damit sie nach der Abtrennung schnell im Meer versinken. Zudem wurden Radarsensoren zur Flugbahnkontrolle eingebaut.[10] Die Bauarbeiten an der neuen Sojus-Startanlage in Kourou konnten jedoch nicht zum ursprünglichen Termin gestartet werden und wurden bis Mitte 2011 abgeschlossen,[11] wobei die ESA die meisten Kosten des Baus trägt, die mit 344 Millionen € angegeben werden. Die Grundsteinlegung der Baustelle erfolgte am 26. Februar 2007. Dabei wurde eine Tafel enthüllt sowie ein etwa 20 kg schwerer Stein aus der Startrampe in Baikonur eingemauert, von der aus Juri Gagarin im April 1961 als erster Mensch ins All aufbrach. Der erste Start einer Sojus in Kourou wurde Ende 2006 noch für Mai 2009[12] angesetzt. Wegen technischer Probleme erfolgte der Erststart erst am 21. Oktober 2011.[11] Mit dem Dienstantritt der kleineren Vega-Rakete Mitte 2012[13] kann Arianespace in Kourou Startdienste in allen Nutzlastkategorien anbieten: für leichte Nutzlasten die Vega, für mittelschwere Sojus-ST und für schwere Ariane 5.
Da Kourou viel näher am Äquator als Baikonur liegt, ist es energetisch günstiger, von dort geostationäre Satelliten zu starten, so dass eine Sojus in Kourou über eine höhere Nutzlastkapazität als in Baikonur oder Plessezk verfügt. Die Nutzlastkapazität der Sojus-ST wird mit 2.720 kg für einen Geotransferorbit, 1.360 kg für einen geostationären Orbit und 4.350 kg für einen sonnensynchronen Orbit angegeben. Bei ihrem Erststart am 21. Oktober 2011 brachte eine Sojus-ST die ersten beiden Satelliten des Satellitennavigationssystems Galileo in eine Umlaufbahn.[14]
Die Sojus wird von Starsem vermarktet und vom russischen Hersteller TsSKB-Progress (Samara Space Center) gebaut. Die von verschiedenen Firmen gelieferten Raketenteile werden in einem speziellen Montage- und Prüfgebäude horizontal zusammengefügt. In Kourou erfolgt das Aufrichten schon kurz nach dem Verlassen des Montagegebäudes. Die Rakete wird dort bis zum Start aus klimatischen Gründen noch von einem zusätzlichen fahrbaren Wartungsturm bis zur Startrampe umschlossen.[15] Nach dem Aufsetzen der (voll betankten und ausgerüsteten) Nutzlast wird die Rakete mit einem Spezialfahrzeug per Schiene zur etwa 2 km entfernten Startplattform bewegt. Erst dort wird die Rakete hydraulisch in ihre senkrechte Position gebracht, auf dem drehbaren Starttisch exakt in die spätere Startrichtung (Inklination) ausgerichtet und in die Startplattform über der etwa 25 m tiefen Grube eingehängt. Die Rakete steht dabei nicht auf dem Starttisch, sondern ist an den vier Auslegern etwa in Höhe der Enden der Booster eingehängt, was es ermöglichte, die Rakete weniger stabil und damit (durch die verringerte Strukturmasse) leichter zu bauen. Zusätzlich werden die beiden Hälften des Wartungs- und Kontrollturmes nun in Position gebracht. Etwa acht Stunden vor dem Start beginnt der finale Countdown. Betankt wird die Rakete in der Regel erst wenige Stunden vor dem Start. Bei bemannten Missionen trifft die Besatzung etwa zweieinhalb Stunden vor dem Start ein und nimmt im Raumschiff Platz. Eine Stunde vor dem Start werden die Wartungstürme zurückgeklappt und 15 Minuten vor dem Start wird die eigenständige Energieversorgung eingeschaltet und das Rettungssystem aktiviert. Sechs Minuten vor dem Start wird der automatische Start eingeleitet, der Kabelmast und der Betankungsmast werden weg geschwenkt. Zweieinhalb Minuten vor dem Start werden Tanks mit Stickstoffgas unter Druck gesetzt und 45 Sekunden vor dem Start komplett auf die interne Stromversorgung umgeschaltet. 20 Sekunden vor dem Abheben wird dann das Startkommando gegeben (Point of no return), drei Sekunden später zünden die Triebwerke und drei Sekunden vor dem Abheben erreichen die Triebwerke ihre volle Leistung. Nun öffnen sich die Ausleger blütenförmig durch ihr Eigengewicht und durch den Wegfall des Gewichtes der Rakete aufgrund deren Schubes beim Start. Etwa 118 Sekunden später werden die Booster und nach 226 Sekunden wird die Nutzlastverkleidung abgeworfen. Nach 288 s ist die zweite Stufe ausgebrannt und wird abgeworfen und nach 295 s der untere Teil der Verkleidung der dritten Stufe, die bis zu Sekunde 528 weiter arbeitet und sich dann abtrennt. Bei unbemannten Missionen mit einer vierten Stufe zündet diese etwa bei Sekunde 588. Beim Startvorgang treten Beschleunigungen bis zu 4,3 g kurz vor dem Abtrennen der ersten Stufe und noch einmal knapp 3,5 g kurz vor Brennschluss der Drittstufe auf.[16][17]
Alle geplanten sowie durchgeführten Starts ab 1990 sind in der Startliste der Sojus-Rakete aufgeführt.
Version | R7 | Sojus | Sojus U | Sojus-U2 | Sojus-FG | Sojus-2.1a | Sojus-2.1b | Sojus-2.1w |
---|---|---|---|---|---|---|---|---|
Stufen | 2 | 3 | 3–4 | 3 | 3–4 | 2 | ||
Erste Stufe | 4×RD-107 | 4×RD-117 | 4×RD-107A | 1×NK-33 1×RD-0110R | ||||
Zweite Stufe | 1×RD-108 | 1×RD-118 | 1×RD-108A | 1×RD-0124 | ||||
Dritte Stufe | — | 1×RD-0110 | 1×RD-0124 | — | ||||
Schub (am Boden) | 3904 kN | 4038 kN | 4030 kN | 4088 kN | 4143 kN | 1780 kN | ||
Startmasse | 280 t | 308 t | 313 t | 305 t | 311 t | 157 t | ||
Höhe (maximal) | 34 m | 50,67 m | 51,1 m | 49,5 m | 50,7 m | 44 m | ||
Nutzlast (LEO 200 km)1 | — | 6,45 t | 6,95 t | 7,15 t | 7,13 t | 7,02 t | 8,25 t | 2,8 t |
Nutzlast (GTO)1 | — | — | 2,1 t | — | 2,2 t | ? t | 3,2 t | — |
Die Booster der ersten Stufe der Sojus-Raketen, die von Baikonur aus starten, gehen in der Kasachensteppe nieder und werden dort von Schrottsammlern geborgen und verwertet.[18]