Quantisierung (Physik): Unterschied zwischen den Versionen

Quantisierung (Physik): Unterschied zwischen den Versionen

imported>Acky69
 
imported>Hfst
(Es geht hier um den Übergang einer klassischen Theorie in eine Quantentheorie und die soll nicht nur näherungsweise funktionieren =>Änderung 215487190 von Markus Abt rückgängig gemacht;)
 
Zeile 1: Zeile 1:
'''Quantisierung''' ist bei der theoretischen Beschreibung eines [[Physikalisches System|physikalischen Systems]] der Schritt, bei dem Ergebnisse, Begriffe oder Methoden der [[Klassische Physik|klassischen Physik]] so abgeändert werden, dass [[quantenphysik]]alische Beobachtungen am System richtig wiedergegeben werden. Unter anderem soll dadurch die [[Quantelung]] vieler messbarer Größen erklärt werden, z. B. das Vorliegen bestimmter, diskreter Energiewerte bei den Anregungsstufen eines Atoms.
'''Quantisierung''' ist bei der theoretischen Beschreibung eines [[Physikalisches System|physikalischen Systems]] der Schritt, bei dem Ergebnisse, Begriffe oder Methoden der [[Klassische Physik|klassischen Physik]] so abgeändert werden, dass [[quantenphysik]]alische Beobachtungen am System richtig wiedergegeben werden. Unter anderem soll dadurch die [[Quantelung]] vieler messbarer Größen erklärt werden, z. B. das Vorliegen bestimmter, [[Diskret #In_Wissenschaft_und_Technik|diskret]]er Energiewerte bei den Anregungsstufen eines Atoms.


Ab 1900, zu Beginn der [[Quantenphysik]], bedeutete Quantisierung im Wesentlichen, dass mithilfe bestimmter Regeln von den nach der klassischen Physik möglichen Prozessen und Zuständen diejenigen auszuschließen waren, die den Beobachtungen widersprachen. Dies kennzeichnet die älteren Quantentheorien, unter ihnen z. B. das bekannte [[Bohrsches Atommodell|Bohrsche Atommodell]]. [[Werner Heisenberg]] und [[Erwin Schrödinger]] fanden 1925/26 unabhängig voneinander zwei Wege, wie man statt der Ergebnisse der klassischen Mechanik deren Grundbegriffe und Grundgleichungen zu modifizieren hat, um daraus quantenphysikalische Beobachtungen richtig vorhersagen zu können. Es begann die Entwicklung der heutigen [[Quantenmechanik]]. Die gemeinsame Grundlage dieser beiden Wege wird als ''kanonische Quantisierung'' bezeichnet. Die kanonische Quantisierung lässt sich auch für [[Feld (Physik)|physikalische Felder]] durchführen und wurde ab 1927 zur Grundlage der [[Quantenfeldtheorie]].
Ab 1900, zu Beginn der Quantenphysik, bedeutete Quantisierung im Wesentlichen, dass mithilfe bestimmter [[Phänomenologie (Methodik)|phänomenologisch]]er Regeln von den nach der klassischen Physik möglichen Prozessen und Zuständen diejenigen auszuschließen waren, die den Beobachtungen widersprachen. Dies kennzeichnet die älteren Quantentheorien, unter ihnen z. B. das [[Bohrsches Atommodell|Bohrsche Atommodell]]. [[Werner Heisenberg]] und [[Erwin Schrödinger]] fanden 1925/26 unabhängig voneinander zwei Wege, wie man statt der Ergebnisse der klassischen Mechanik deren Grundbegriffe und Grundgleichungen zu modifizieren hat, um daraus quantenphysikalische Beobachtungen richtig vorhersagen zu können. Die gemeinsame Grundlage dieser beiden Wege wird als ''kanonische Quantisierung'' bezeichnet. Mit ihr begann die Entwicklung der heutigen [[Quantenmechanik]]. Die kanonische Quantisierung lässt sich auch für [[Feld (Physik)|physikalische Felder]] durchführen und wurde ab 1927 zur Grundlage der [[Quantenfeldtheorie]].


== Entwicklung ==
== Entwicklung ==
=== Ältere Quantentheorie (1900–1925) ===
=== Ältere Quantentheorie (1900–1925) ===
Die erste Regel zur Quantisierung wurde 1900 von [[Max Planck]] angegeben, um mit den Mitteln der klassischen [[Statistische Physik|statistischen Physik]] das Spektrum der [[Wärmestrahlung]] berechnen zu können. Diese damals als [[Quantenhypothese]] bezeichnete Regel lautet: Der Energieaustausch zwischen Materie und elektromagnetischer Strahlung der Frequenz <math>\nu</math>  findet nur in Quanten der Größe <math>h\nu</math> statt, d.&nbsp;h., er ist [[Quantelung|''gequantelt'']]. Darin ist die Konstante <math>h</math> das [[Plancksches Wirkungsquantum|Plancksche Wirkungsquantum]].
Die erste Regel zur Quantisierung wurde 1900 von [[Max Planck]] angegeben, um mit den Mitteln der klassischen [[Statistische Physik|statistischen Physik]] das Spektrum der [[Wärmestrahlung]] berechnen zu können. Diese damals als [[Quantenhypothese]] bezeichnete Regel lautet: Der Energieaustausch zwischen Materie und [[elektromagnetische Strahlung|elektromagnetischer Strahlung]] der [[Frequenz]] <math>\nu</math>  findet nur in [[Quant]]en der Größe <math>h\nu</math> statt, d.&nbsp;h., er ist [[Quantelung|''gequantelt'']]. Darin ist die Konstante <math>h</math> das [[Plancksches Wirkungsquantum|Plancksche Wirkungsquantum]].
 
Die Vorstellung, dass es ein [[harmonischer Oszillator]] ist, dem das elektromagnetische Feld Energie zuführt oder abnimmt, leitet zur Aussage, dass er nicht mit beliebig wählbarer Energie angeregt sein kann, sondern nur Zustände mit diskreten äquidistanten [[Energieniveau]]s im Abstand <math>\Delta E = h\nu</math> besitzt. Diese Auswahl aus dem [[Kontinuum (Physik)|Kontinuum]] der klassisch erlaubten Zustände lässt sich aus der allgemeineren  Annahme herleiten, jeder Zustand beanspruche im [[Phasenraum]] ein Volumen der Größe <math>h</math> (pro Raumdimension). Gleichbedeutend ist die Forderung, das [[Phasenintegral (Hamilton-Mechanik)|Phasenintegral]] eines Zustands könne für jede Koordinate nur ganzzahlige Vielfache von <math>h</math> annehmen ([[Bohr-sommerfeldsches_Atommodell #Bohr-Sommerfeld-Quantisierung|Bohr-Sommerfeldsche Quantenbedingung]]):


Die Vorstellung, dass es ein [[harmonischer Oszillator]] ist, dem das elektromagnetische Feld Energie zuführt oder abnimmt, leitet zur Aussage, dass er nicht mit beliebig wählbarer Energie angeregt sein kann, sondern nur Zustände mit [[diskret]]en äquidistanten Energieniveaus im Abstand <math>\Delta E = h\nu</math> besitzt. Diese Auswahl aus dem [[Kontinuum (Physik)|Kontinuum]] der klassisch erlaubten Zustände lässt sich aus der allgemeineren  Annahme herleiten, jeder Zustand beanspruche im [[Phasenraum]] ein Volumen der Größe <math>h</math> (pro Raumdimension). Gleichbedeutend ist die Forderung, das [[Phasenintegral]] eines Zustands könne für jede Koordinate nur ganzzahlige Vielfache von <math>h</math> annehmen (Bohr-Sommerfeldsche Quantenbedingung):
:<math>\oint p\,dq = nh</math>, (<math>n=0,\,1,\,2\,\ldots</math>)
:<math>\oint p\,dq = nh</math>, (<math>n=0,\,1,\,2\,\ldots</math>)
Darin ist <math>q</math> eine (verallgemeinerte) Ortskoordinate und <math>p</math> der zugehörige [[Kanonischer Impuls|(kanonische) Impuls]], im Sinne der klassischen Mechanik in ihrer [[Hamiltonsche Mechanik|Formulierung nach Hamilton]] oder [[Lagrange-Formalismus|Lagrange]].
 
Darin ist <math>q</math> eine [[verallgemeinerte Koordinate|(verallgemeinerte) Ortskoordinate]] und <math>p</math> der zugehörige [[Kanonischer Impuls|(kanonische) Impuls]], im Sinne der [[Klassische Mechanik|klassischen Mechanik]] in ihrer [[Hamiltonsche Mechanik|Formulierung nach Hamilton]] oder [[Lagrange-Formalismus|Lagrange]].


=== Quantenmechanik (ab 1925) ===
=== Quantenmechanik (ab 1925) ===
Die [[Quantenmechanik]] modifiziert die Hamiltonsche Mechanik dahingehend, dass die Orts- und Impulskoordinaten nicht mehr Zahlenwerten („c-Zahl“ für „classical number)“ entsprechen, sondern [[Operator (Mathematik)|Operatoren]] („q-Zahl“ für „quantum number“). Die Hamilton-Funktion wird dadurch zum [[Hamilton-Operator]]. Solche Größen heißen [[Observable]]n, ihre möglichen Messwerte sind durch die [[Eigenwert]]e des zugehörigen Operators gegeben, die je nach Operator kontinuierlich oder diskret verteilt (''gequantelt'') sein können. Die Abweichungen von den Ergebnissen der klassischen Mechanik ergeben sich dadurch, dass diese Operatoren in Produkten nicht miteinander [[Kommutator (Mathematik)#Anwendung in der Physik|vertauschbar]] sind. Insbesondere wird die Bohr-Sommerfeldsche Quantenbedingung als Näherung erhalten.
Die [[Quantenmechanik]] modifiziert die Hamiltonsche Mechanik dahingehend, dass die ''kanonisch konjugierten'' Orts- und Impulskoordinaten nicht mehr Zahlenwerten („c-Zahl“ für „classical number)“ entsprechen, sondern [[Operator (Mathematik)|Operatoren]] („q-Zahl“ für „quantum number“). Diese Modifikation wird auch [[1. Quantisierung]] oder '''kanonische Quantisierung''' genannt.


Die Vorschrift, in der klassischen Hamilton-Funktion die Variablen, die in der Hamiltonschen Mechanik als Paar ''kanonisch konjugierter'' Koordinaten bezeichnet werden, durch geeignete Operatoren zu ersetzen, wird auch [[1. Quantisierung]] oder '''kanonische Quantisierung''' genannt.
Die [[Hamilton-Funktion]] wird dadurch zum [[Hamilton-Operator]]. Solche Größen heißen [[Observable]]n, ihre möglichen Messwerte sind durch die [[Eigenwert]]e des zugehörigen Operators gegeben, die je nach Operator kontinuierlich oder diskret verteilt (''gequantelt'') sein können. Die Abweichungen von den Ergebnissen der klassischen Mechanik ergeben sich dadurch, dass diese Operatoren in Produkten nicht miteinander [[Kommutator (Mathematik) #Anwendung in der Physik|vertauschbar]] sind. Insbesondere wird die Bohr-Sommerfeldsche Quantenbedingung als Näherung erhalten.


=== Quantenelektrodynamik (ab 1927) ===
=== Quantenelektrodynamik (ab 1927) ===
Auch die Quantenelektrodynamik geht von den klassischen Feldgleichungen (hier den [[Maxwell-Gleichungen]]) in hamiltonscher Form aus und quantisiert sie nach dem Vorbild der 1. Quantisierung. Aus den Operatoren für die Feldstärke und dem zugehörigen kanonischen Impuls lassen sich ''Auf-'' und ''Absteigeoperatoren'' bilden, die die Energie des Feldes um jeweils <math>h\nu \ (=\hbar \omega)</math> verändern. Das ist wie bei den Orts- und Impulsoperatoren des harmonischen Oszillators, hat hier aber die Bedeutung einer Vermehrung oder Verminderung der Anzahl der Photonen, d.&nbsp;h. der [[Feldquant]]en des elektromagnetischen Feldes. In gewissem Sinne wird hier also die Teilchenzahl selber zu einer quantentheoretischen Messgröße ([[Observable]]) mit gequantelten Eigenwerten, weshalb für das ganze Verfahren die Bezeichnung [[2. Quantisierung]] gebraucht wird.
Die [[Quantenelektrodynamik]] geht von den klassischen [[Feldgleichung]]en (hier den [[Maxwell-Gleichungen]]) in hamiltonscher Form aus und quantisiert sie nach dem Vorbild der 1.&nbsp;Quantisierung. Aus den Operatoren für die [[Feldstärke]] und dem zugehörigen kanonischen Impuls lassen sich [[Erzeugungs- und Vernichtungsoperator|Auf- und Absteigeoperatoren]] bilden, die die Energie des Feldes um jeweils <math>h \nu \ (=\hbar \omega)</math> verändern. Darin ist <math>\hbar</math> das [[Plancksches_Wirkungsquantum #Reduziertes_Plancksches_Wirkungsquantum|reduzierte Plancksche Wirkungsquantum]] und <math>\omega</math> die [[Kreisfrequenz]].
 
Das ist wie bei den Orts- und Impulsoperatoren des harmonischen Oszillators, hat hier aber die Bedeutung einer Vermehrung oder Verminderung der Anzahl der [[Photon]]en, d.&nbsp;h. der [[Feldquant]]en des [[elektromagnetisches Feld|elektromagnetischen Feldes]]. In gewissem Sinne wird hier also die Teilchenzahl selber zu einer quantentheoretischen Messgröße (Observable) mit gequantelten Eigenwerten, weshalb für das ganze Verfahren die Bezeichnung [[2. Quantisierung]] gebraucht wird.


=== Andere Quantenfeldtheorien (ab 1934) ===
=== Andere Quantenfeldtheorien (ab 1934) ===
Da nicht nur [[Photon]]en, sondern alle Teilchen erzeugt und vernichtet werden können, werden sie in der [[Quantenfeldtheorie]] als Feldquanten ihrer jeweiligen Felder behandelt. Falls für die Hamilton-Funktion (bzw. [[Lagrange-Funktion]]) des betreffenden Feldes keine klassischen Vorbilder existieren, wird diese in Form eines ''[[Ansatz (Mathematik)|Ansatzes]]'' an den Anfang der theoretischen Behandlung gestellt. Die Quantisierung erfolgt nach dem Vorbild der Quantenelektrodynamik, indem Auf- und Absteigeoperatoren eingeführt werden. Sie werden hier als [[Erzeugungsoperator|Erzeugungs]]- bzw. [[Vernichtungsoperator]] bezeichnet. Die Vertauschungsregeln, denen sie genügen, werden entweder so festgelegt wie in der Quantenelektrodynamik (als [[Kommutator (Mathematik)|Kommutatoren]]), oder mit einem Vorzeichenwechsel als [[Antikommutator]]en. Im ersten Fall ergeben sich die Feldquanten als [[Boson]]en, im zweiten Fall als [[Fermion]]en. Dieses Verfahren wird als ''kanonische Feldquantisierung'' bezeichnet.
Da nicht nur Photonen, sondern alle Teilchen erzeugt und vernichtet werden können, werden sie in der [[Quantenfeldtheorie]] als Feldquanten ihrer jeweiligen Felder behandelt. Falls für die Hamilton-Funktion (bzw. Lagrange-Funktion) des betreffenden Feldes keine klassischen Vorbilder existieren, wird diese in Form eines [[Ansatz (Mathematik)|Ansatzes]] an den Anfang der theoretischen Behandlung gestellt. Die Quantisierung erfolgt nach dem Vorbild der Quantenelektrodynamik, indem Auf- und Absteigeoperatoren eingeführt werden. Sie werden hier als [[Erzeugungsoperator|Erzeugungs- bzw. Vernichtungsoperator]] bezeichnet.
 
Die Vertauschungsregeln, denen sie genügen, werden festgelegt:
* entweder wie in der Quantenelektrodynamik als [[Kommutator (Mathematik)|Kommutatoren]], dann ergeben sich die Feldquanten als [[Boson]]en,
* oder mit einem Vorzeichenwechsel als [[Antikommutator]]en, dann ergeben sich die Feldquanten als [[Fermion]]en.
Dieses Verfahren wird als ''kanonische Feldquantisierung'' bezeichnet.


== Liste von Quantisierungsmethoden ==
=== Deformationsquantisierung (ab 1970er) ===
# [[#Quantenmechanik (ab 1925)|kanonische Quantisierung]]
Die [[Deformationsquantisierung]] (auch ''Phasenraumformulierung der Quantenmechanik'') ist eine Quantisierungsmethode, bei der durch ''Deformation'' der zugrundeliegenden Geometrie, durch ersetzen des [[Algebra über einem kommutativen Ring|Produkts]] der klassischen Observablen mit einem nicht-kommutativen [[Sternprodukt]] und der Deformierung der [[Poisson-Klammer]]n zu passenden [[Lie-Klammer]]n, eine Quantisierung des klassischen Hamiltonischen System entsteht. Die [[Zustand (Quantenmechanik)|Quantenzustände]] werden durch eine [[Quasiwahrscheinlichkeitsverteilung]] auf dem [[Phasenraum]] beschrieben.
# [[Pfadintegral]]
# [[geometrische Quantisierung]]
# [[Bohr-Sommerfeld-Quantisierung]]
# [[1. Quantisierung]]
# [[2. Quantisierung]]
# [[Deformationsquantisierung]]
# [[Weyl-Quantisierung]]


== Literatur ==
== Literatur ==

Aktuelle Version vom 12. September 2021, 06:47 Uhr

Quantisierung ist bei der theoretischen Beschreibung eines physikalischen Systems der Schritt, bei dem Ergebnisse, Begriffe oder Methoden der klassischen Physik so abgeändert werden, dass quantenphysikalische Beobachtungen am System richtig wiedergegeben werden. Unter anderem soll dadurch die Quantelung vieler messbarer Größen erklärt werden, z. B. das Vorliegen bestimmter, diskreter Energiewerte bei den Anregungsstufen eines Atoms.

Ab 1900, zu Beginn der Quantenphysik, bedeutete Quantisierung im Wesentlichen, dass mithilfe bestimmter phänomenologischer Regeln von den nach der klassischen Physik möglichen Prozessen und Zuständen diejenigen auszuschließen waren, die den Beobachtungen widersprachen. Dies kennzeichnet die älteren Quantentheorien, unter ihnen z. B. das Bohrsche Atommodell. Werner Heisenberg und Erwin Schrödinger fanden 1925/26 unabhängig voneinander zwei Wege, wie man statt der Ergebnisse der klassischen Mechanik deren Grundbegriffe und Grundgleichungen zu modifizieren hat, um daraus quantenphysikalische Beobachtungen richtig vorhersagen zu können. Die gemeinsame Grundlage dieser beiden Wege wird als kanonische Quantisierung bezeichnet. Mit ihr begann die Entwicklung der heutigen Quantenmechanik. Die kanonische Quantisierung lässt sich auch für physikalische Felder durchführen und wurde ab 1927 zur Grundlage der Quantenfeldtheorie.

Entwicklung

Ältere Quantentheorie (1900–1925)

Die erste Regel zur Quantisierung wurde 1900 von Max Planck angegeben, um mit den Mitteln der klassischen statistischen Physik das Spektrum der Wärmestrahlung berechnen zu können. Diese damals als Quantenhypothese bezeichnete Regel lautet: Der Energieaustausch zwischen Materie und elektromagnetischer Strahlung der Frequenz $ \nu $ findet nur in Quanten der Größe $ h\nu $ statt, d. h., er ist gequantelt. Darin ist die Konstante $ h $ das Plancksche Wirkungsquantum.

Die Vorstellung, dass es ein harmonischer Oszillator ist, dem das elektromagnetische Feld Energie zuführt oder abnimmt, leitet zur Aussage, dass er nicht mit beliebig wählbarer Energie angeregt sein kann, sondern nur Zustände mit diskreten äquidistanten Energieniveaus im Abstand $ \Delta E=h\nu $ besitzt. Diese Auswahl aus dem Kontinuum der klassisch erlaubten Zustände lässt sich aus der allgemeineren Annahme herleiten, jeder Zustand beanspruche im Phasenraum ein Volumen der Größe $ h $ (pro Raumdimension). Gleichbedeutend ist die Forderung, das Phasenintegral eines Zustands könne für jede Koordinate nur ganzzahlige Vielfache von $ h $ annehmen (Bohr-Sommerfeldsche Quantenbedingung):

$ \oint p\,dq=nh $, ($ n=0,\,1,\,2\,\ldots $)

Darin ist $ q $ eine (verallgemeinerte) Ortskoordinate und $ p $ der zugehörige (kanonische) Impuls, im Sinne der klassischen Mechanik in ihrer Formulierung nach Hamilton oder Lagrange.

Quantenmechanik (ab 1925)

Die Quantenmechanik modifiziert die Hamiltonsche Mechanik dahingehend, dass die kanonisch konjugierten Orts- und Impulskoordinaten nicht mehr Zahlenwerten („c-Zahl“ für „classical number)“ entsprechen, sondern Operatoren („q-Zahl“ für „quantum number“). Diese Modifikation wird auch 1. Quantisierung oder kanonische Quantisierung genannt.

Die Hamilton-Funktion wird dadurch zum Hamilton-Operator. Solche Größen heißen Observablen, ihre möglichen Messwerte sind durch die Eigenwerte des zugehörigen Operators gegeben, die je nach Operator kontinuierlich oder diskret verteilt (gequantelt) sein können. Die Abweichungen von den Ergebnissen der klassischen Mechanik ergeben sich dadurch, dass diese Operatoren in Produkten nicht miteinander vertauschbar sind. Insbesondere wird die Bohr-Sommerfeldsche Quantenbedingung als Näherung erhalten.

Quantenelektrodynamik (ab 1927)

Die Quantenelektrodynamik geht von den klassischen Feldgleichungen (hier den Maxwell-Gleichungen) in hamiltonscher Form aus und quantisiert sie nach dem Vorbild der 1. Quantisierung. Aus den Operatoren für die Feldstärke und dem zugehörigen kanonischen Impuls lassen sich Auf- und Absteigeoperatoren bilden, die die Energie des Feldes um jeweils $ h\nu \ (=\hbar \omega ) $ verändern. Darin ist $ \hbar $ das reduzierte Plancksche Wirkungsquantum und $ \omega $ die Kreisfrequenz.

Das ist wie bei den Orts- und Impulsoperatoren des harmonischen Oszillators, hat hier aber die Bedeutung einer Vermehrung oder Verminderung der Anzahl der Photonen, d. h. der Feldquanten des elektromagnetischen Feldes. In gewissem Sinne wird hier also die Teilchenzahl selber zu einer quantentheoretischen Messgröße (Observable) mit gequantelten Eigenwerten, weshalb für das ganze Verfahren die Bezeichnung 2. Quantisierung gebraucht wird.

Andere Quantenfeldtheorien (ab 1934)

Da nicht nur Photonen, sondern alle Teilchen erzeugt und vernichtet werden können, werden sie in der Quantenfeldtheorie als Feldquanten ihrer jeweiligen Felder behandelt. Falls für die Hamilton-Funktion (bzw. Lagrange-Funktion) des betreffenden Feldes keine klassischen Vorbilder existieren, wird diese in Form eines Ansatzes an den Anfang der theoretischen Behandlung gestellt. Die Quantisierung erfolgt nach dem Vorbild der Quantenelektrodynamik, indem Auf- und Absteigeoperatoren eingeführt werden. Sie werden hier als Erzeugungs- bzw. Vernichtungsoperator bezeichnet.

Die Vertauschungsregeln, denen sie genügen, werden festgelegt:

Dieses Verfahren wird als kanonische Feldquantisierung bezeichnet.

Deformationsquantisierung (ab 1970er)

Die Deformationsquantisierung (auch Phasenraumformulierung der Quantenmechanik) ist eine Quantisierungsmethode, bei der durch Deformation der zugrundeliegenden Geometrie, durch ersetzen des Produkts der klassischen Observablen mit einem nicht-kommutativen Sternprodukt und der Deformierung der Poisson-Klammern zu passenden Lie-Klammern, eine Quantisierung des klassischen Hamiltonischen System entsteht. Die Quantenzustände werden durch eine Quasiwahrscheinlichkeitsverteilung auf dem Phasenraum beschrieben.

Literatur

  • Walter Weizel: Lehrbuch der Theoretischen Physik. 2. Auflage. Springer-Verlag, Heidelberg 1958.
  • Georg Joos: Lehrbuch der Theoretischen Physik. 11. Auflage. Akad. Verlagsgesellsch., Frankfurt am Main. 1959.
  • Albert Messiah: Quantum Mechanics. 1. Auflage. North Holland Publ. Comp., Amsterdam 1958.