Natürliche Einheiten: Unterschied zwischen den Versionen

Natürliche Einheiten: Unterschied zwischen den Versionen

185.46.214.49 (Diskussion)
 
imported>Bleckneuhaus
 
Zeile 1: Zeile 1:
{{Begriffsklärungshinweis|Die Bedeutung im Zusammenhang der Informationstheorie findet sich im Artikel [[natürliche Informationseinheit]]}}
{{Begriffsklärungshinweis|Die Bedeutung im Zusammenhang der Informationstheorie findet sich im Artikel [[natürliche Informationseinheit]]}}
Als '''Natürliche Einheiten ''' in der [[Physik]] werden [[Maßeinheit]]en angesehen, die durch die Werte von [[Naturkonstanten]] gegeben sind. Das unterscheidet sie von Einheiten, die durch Prototypen wie das [[Urkilogramm]] oder die Eigenschaften einer bestimmten [[Atomsorte]] bestimmt werden.
Als '''Natürliche Einheiten ''' in der [[Physik]] werden Systeme von [[Maßeinheit]]en bezeichnet, die durch die Werte von [[Naturkonstanten]] gegeben sind. Durch Verwendung solcher Einheiten vereinfachen sich oft physikalische Formeln. Betrachtet man die betreffenden Naturkonstanten außerdem als „[[dimensionslos]]“, also als reine Zahlen, vereinfacht dies die Formeln weiter. Wenn beispielsweise die Lichtgeschwindigkeit ''c'' gleich der Zahl 1 gesetzt wird, vereinfacht sich die bekannte [[Äquivalenz von Masse und Energie|Masse-Energie-Äquivalenz]] ''E&nbsp;=&nbsp;mc<sup>2</sup>'' zu ''E&nbsp;=&nbsp;m'', außerdem haben dann Energie, Impuls und Masse dieselbe [[Dimension (Größensystem)|Dimension]].
 
Hiervon zu unterscheiden ist die Definition von Maßeinheiten mit Hilfe von Naturkonstanten. Im [[Internationales Einheitensystem|Internationalen Einheitensystem]] SI werden seit 1983 die Lichtgeschwindigkeit und seit der [[Internationales Einheitensystem#Neudefinition2019|Revision von 2019]] weitere fundamentale Naturkonstanten zur Definition von Einheiten verwendet. Diese Naturkonstanten behalten dabei ihre bisherige Dimension und werden ''nicht'' zu natürlichen Einheiten.


== Grundlagen für natürliche Einheiten ==
== Grundlagen für natürliche Einheiten ==
Natürliche Einheiten sollen sich zur besonders einfachen Beschreibung von Naturvorgängen eignen. So ist z.&nbsp;B. die [[Vakuumlichtgeschwindigkeit]] <math>c</math> die Obergrenze für die Geschwindigkeit, mit der sich physikalische Wirkungen ausbreiten können, und  <math>c^{2}</math> ist der Umrechnungsfaktor zwischen Masse und entsprechender Energie. Die [[Elementarladung]] <math>e</math> – und abgesehen von einem Faktor 1/2 auch die [[Plancksche Konstante]] <math>\hbar</math> sind die kleinsten möglichen von Null verschiedenen Werte für Ladung bzw. Drehimpuls.
Natürliche Einheiten sollen sich zur besonders einfachen Beschreibung von Naturvorgängen eignen. So ist z.&nbsp;B. die [[Vakuumlichtgeschwindigkeit]] <math>c</math> die Obergrenze für die Geschwindigkeit, mit der sich physikalische Wirkungen ausbreiten können, und  <math>c^{2}</math> ist der Umrechnungsfaktor zwischen Masse und [[Ruheenergie]] eines Teilchens. Die [[Elementarladung]] <math>e</math> (abgesehen von einem Faktor ⅓ für die [[Quark (Physik)|Quarks]]) und das [[Reduziertes Plancksches Wirkungsquantum|Reduzierte Plancksche Wirkungsquantum]] <math>\hbar</math> (abgesehen von einem Faktor ½  für den [[Spin]]) – sind die kleinsten möglichen von Null verschiedenen Werte für elektrische Ladung bzw. Drehimpuls.


Als Grundlage können daher dienen:
Als Grundlage können daher dienen:
* die [[Elementarladung]]: <math>e</math> für die [[elektrische Ladung]]
* die [[Elementarladung]]: <math>e</math> für die [[elektrische Ladung]]
* die [[Vakuumlichtgeschwindigkeit]]: <math>c</math> für die [[Geschwindigkeit]]
* die [[Vakuumlichtgeschwindigkeit]]: <math>c</math> für die [[Geschwindigkeit]]
* das [[Plancksches Wirkungsquantum|Plancksche Wirkungsquantum]]: <math>h</math> für den [[Drehimpuls]]
* das [[Reduziertes Plancksches Wirkungsquantum|Reduzierte Plancksches Wirkungsquantum]]: <math>\hbar</math> für den [[Drehimpuls]]
* die [[Gravitationskonstante]] <math>G</math>
* die [[Gravitationskonstante]]: <math>G</math>
* die [[Boltzmann-Konstante]]: <math>k_\mathrm{B}</math>
* die [[Boltzmann-Konstante]]: <math>k_\mathrm{B}</math>
* die [[elektrische Feldkonstante]]: <math>\varepsilon_0</math> oder die direkt hiervon abhängige [[Physikalische Konstante|Coulomb-Konstante]] <math>k_C</math>
* die [[elektrische Feldkonstante]]: <math>\varepsilon_0</math> oder die direkt hiervon abhängige [[Coulomb-Konstante]] <math>k_\mathrm C</math>


sowie Eigenschaften wichtiger Teilchen wie:
sowie Eigenschaften wichtiger Teilchen wie:
* die [[Elektronenmasse]]: <math>m_e</math>
* die [[Elektron]]enmasse: <math>m_\mathrm e</math>
* die [[Protonenmasse]]: <math>m_p</math>
* die [[Proton]]enmasse: <math>m_\mathrm p</math>
* die [[Neutronenmasse]]: <math>m_n</math>
* die [[Neutron]]enmasse: <math>m_\mathrm n</math>


Welche dieser Grundlagen gewählt werden, hängt vom jeweiligen Teilgebiet der Physik ab. Es gibt daher verschiedene Systeme natürlicher Einheiten.
Da mehr Naturkonstanten zur Verfügung stehen, als das übliche Einheitensystem Dimensionen hat, können verschiedene natürliche Einheitensysteme gebildet werden.
Welche dieser Grundlagen gewählt werden, hängt vom jeweiligen Teilgebiet der Physik ab.


== Natürliche Einheitensysteme ==
== Vorteile und Nachteile ==
=== Möglichkeiten ===
Die betreffenden Naturkonstanten haben, wenn sie in den entsprechenden natürlichen Einheiten angegeben werden, sämtlich den Zahlenwert&nbsp;1. Daher treten die Konstanten gar nicht in Erscheinung, wenn in konkreten Berechnungen [[Zahlenwertgleichung]]en benutzt werden.
Da mehr Naturkonstanten zur Verfügung stehen, als das übliche Einheitensystem [[Dimension (Größensystem)|Dimensionen]] hat, können verschiedene Einheitensysteme gebildet werden, die allein auf natürlichen Konstanten beruhen. Zusammengenommen ermöglichen mehrere Naturkonstanten verschiedener [[Dimension (Größensystem)|Dimension]] es, natürliche Einheiten für eine Vielzahl physikalischer Größen zu definieren. Diese bilden ein ''natürliches Einheitensystem''.


=== Vorteile und Nachteile ===
Meist werden die Konstanten zusätzlich als dimensionslos angesetzt, so dass alle Formeln zu Zahlenwertgleichungen werden und erheblich einfacher aussehen. Diesem formalen Vorteil steht der Nachteil gegenüber, dass man auch die Ergebnisse aller Berechnungen zunächst als reine Zahlen erhält. Die richtigen Dimensionen und Einheiten ergeben sich erst durch anschließendes Umrechnen in ein „gewöhnliches“ Einheitensystem. Eine [[Dimensionsbetrachtung]] beider Gleichungsseiten zur Fehlerkontrolle ist bei Gleichungen in einem solchen natürlichen Einheitensystem nicht möglich. Auch weichen die Größenordnungen der natürlichen Einheiten meist weit von den im Alltag und in der Technik üblichen ab; deshalb ist die allgemeine Verwendung eines natürlichen Einheitensystems anstelle z.&nbsp;B. des Internationalen Einheitensystems (SI) nie ernsthaft erwogen worden.
Die betreffenden Naturkonstanten haben, wenn sie in den entsprechenden natürlichen Einheiten angegeben werden, sämtlich den Zahlenwert&nbsp;1. Daher treten die Konstanten gar nicht in Erscheinung, wenn in konkreten Berechnungen [[Zahlenwertgleichung]]en benutzt werden. Meist werden die Konstanten zusätzlich als [[dimensionslos]] angesetzt, so dass alle Formeln zu Zahlenwertgleichungen werden und erheblich einfacher aussehen.


Diesem formalen Vorteil steht der Nachteil gegenüber, dass man auch die Ergebnisse aller Berechnungen zunächst als reine Zahlen erhält. Die richtigen [[Dimension (Größensystem)|Dimensionen]] und Einheiten ergeben sich erst durch anschließendes Umrechnen in ein „gewöhnliches“ Einheitensystem. Eine [[Dimensionsbetrachtung]] beider Gleichungsseiten zur Fehlerkontrolle ist bei Gleichungen in einem natürlichen Einheitssystem nicht möglich. Auch weichen die Größenordnungen der natürlichen Einheiten meist weit von den im Alltag und in der Technik üblichen ab; deshalb ist die allgemeine Verwendung eines natürlichen Einheitensystems anstelle des Internationalen Einheitensystems nie ernsthaft erwogen worden.
== Natürliche Einheitensysteme ==
{| class="wikitable center"
|+ Übersicht über natürliche Einheitensysteme und deren Grundlagen
!
! [[Planck-Einheiten]]
! Stoney-Einheiten
! Teilchen&shy;physik
! [[Atomare Einheiten]]
! Relativitäts&shy;theorie
! Quanten&shy;chromodynamik
|-
! [[Lichtgeschwindigkeit|Lichtgeschwindigkeit im Vakuum]]<br />
<math>c</math>
| <math>1</math>
| <math>1</math>
| <math>1</math>
| —
| <math>1</math>
| <math>1</math>
|-
! [[Elementarladung]]<br />
<math>e</math>
| —
| <math>1</math>
| —
| <math>1</math>
| —
| —
|-
! [[Elektrische Feldkonstante]]<br />
<math>\varepsilon_0</math>
| <math>\frac{1}{4\pi}</math>
| <math>\frac{1}{4\pi}</math>
| <math>1</math>
| <math>\frac{1}{4\pi}</math>
| <math>\left(\frac{1}{4\pi}\right)</math>
| —
|-
! [[Coulomb-Konstante]]<br />
<math>k_C = \frac{1}{4\pi\varepsilon_0}</math>
| <math>1</math>
| <math>1</math>
| <math>\frac{1}{4\pi}</math>
| <math>1</math>
| <math>\left(1\right)</math>
| —
|-
! [[Gravitationskonstante]]<br />
<math>G</math>
| <math>1</math>
| <math>1</math>
| —
| —
| <math>1</math>
| —
|-
! [[Boltzmann-Konstante]]<br />
<math>k_\mathrm B</math>
| <math>1</math>
| —
| <math>1</math>
| —
| —
| <math>1</math>
|-
! [[Reduziertes Plancksches Wirkungsquantum]]<br />
<math>\hbar = \frac{h}{2\pi}</math>
| <math>1</math>
| —
| <math>1</math>
| <math>1</math>
| —
| <math>1</math>
|-
! [[Elektron]]enmasse<br />
<math>m_\mathrm e</math>
| —
| —
| —
| <math>1</math>
| —
| —
|-
! [[Proton]]enmasse<br />
<math>m_\mathrm p</math>
| —
| —
| —
| —
| —
| <math>1</math>
|}


=== Planck-Einheiten ===
=== Planck-Einheiten ===
Zeile 33: Zeile 125:
Die konsequenteste Umsetzung der natürlichen Einheiten findet sich bei den 1899 von [[Max Planck]] vorgeschlagenen Planck-Einheiten. In diesem Einheitensystem werden gesetzt:
Die konsequenteste Umsetzung der natürlichen Einheiten findet sich bei den 1899 von [[Max Planck]] vorgeschlagenen Planck-Einheiten. In diesem Einheitensystem werden gesetzt:
* die Lichtgeschwindigkeit: <math>c = 1</math>
* die Lichtgeschwindigkeit: <math>c = 1</math>
* das ''reduzierte Plancksche Wirkungsquantum'': <math>\hbar = 1</math> (damit ist <math>h = 2 \pi </math>)
* das [[Reduziertes Plancksches Wirkungsquantum|reduzierte Plancksche Wirkungsquantum]]: <math>\hbar = 1</math> (damit ist <math>h = 2 \pi </math>)
* die Newtonsche [[Gravitationskonstante]]:  <math>G = 1</math>
* die Newtonsche Gravitationskonstante:  <math>G = 1</math>
* die [[Boltzmann-Konstante]]: <math>k_\mathrm{B} = 1</math>
* die Boltzmann-Konstante: <math>k_\mathrm{B} = 1</math>
* die [[Physikalische Konstante|Coulomb-Konstante]]:  <math>k_C = 1</math> (damit ist <math>\varepsilon_0=(4\pi k_C)^{-1}=(4\pi)^{-1}</math>).
* die Coulomb-Konstante:  <math>k_\mathrm C = 1</math> (damit ist <math>\varepsilon_0=(4\pi k_\mathrm C)^{-1}=(4\pi)^{-1}</math>).


Dieses Einheitensystem gilt deshalb als fundamental, weil die zugrundegelegten Naturkonstanten die allgemeinsten Zusammenhänge von Raum und Zeit betreffen und für alle Arten von Teilchen und Wechselwirkungen gelten. (Die Konstante <math>k_\mathrm{B}</math> wird hier nur für die Anpassung der Temperaturskala an die Energieskala benötigt.)
Dieses Einheitensystem gilt deshalb als fundamental, weil die zugrundegelegten Naturkonstanten die allgemeinsten Zusammenhänge von Raum und Zeit betreffen und für alle Arten von Teilchen und Wechselwirkungen gelten. (Die Konstante <math>k_\mathrm{B}</math> wird hier nur für die Anpassung der Temperaturskala an die Energieskala benötigt.)


Mithilfe der [[Physikalisches Gesetz|Naturgesetze]], die die o.g. Konstanten definieren, lassen sich die Planck-Einheiten auch durch folgende Beziehungen einführen:
Mithilfe der [[Physikalisches Gesetz|Naturgesetze]], die die o.&nbsp;g. Konstanten definieren, lassen sich die Planck-Einheiten auch durch folgende Beziehungen einführen:
* Während der Zeiteinheit legt Licht im [[Vakuum]] eine Längeneinheit zurück. (Naturgesetz: <math>r = c \cdot t</math>)
* Während der Zeiteinheit legt Licht im [[Vakuum]] eine Längeneinheit zurück. (Naturgesetz: <math>r = c \cdot t</math>)
* Die Energieeinheit ist die Quantenenergie einer [[Schwingung]], deren [[Periode (Physik)|Periode]] gleich einer Zeiteinheit ist. (Naturgesetz: <math>E = h/t </math>)
* Die Energieeinheit ist die Quantenenergie einer [[Schwingung]], deren [[Periode (Physik)|Periode]] gleich einer Zeiteinheit ist. (Naturgesetz: <math>E = h/t </math>)
Zeile 51: Zeile 143:
* die Lichtgeschwindigkeit: <math>c = 1</math>
* die Lichtgeschwindigkeit: <math>c = 1</math>
* die Newtonsche Gravitationskonstante: <math>G = 1</math>
* die Newtonsche Gravitationskonstante: <math>G = 1</math>
Zur Definition der Ladung benutzte Stoney das [[Elektrostatische Einheit|elektrostatische cgs-System]], so dass auch die [[Coulombsches Gesetz #Coulomb-Konstante|Coulomb-Konstante]] <math>\frac {1}{4 \pi \varepsilon_0} = 1</math>. Nach Stoney sind die natürlichen Einheiten für Länge, Masse und Zeit daher um den Faktor <math> \sqrt{\alpha} \approx 0{,}085</math> kleiner als nach Planck (<math> \alpha = \frac {e^2}{4 \pi \varepsilon_0 \cdot \hbar c} \approx \frac{1}{137}</math> ist die [[Feinstrukturkonstante]]).
Zur Definition der Ladung benutzte Stoney das [[Elektrostatische Einheit|elektrostatische cgs-System]], so dass auch die Coulomb-Konstante <math>\frac {1}{4 \pi \varepsilon_0} = 1</math> ist. Nach Stoney sind die natürlichen Einheiten für Länge, Masse und Zeit daher um den Faktor <math> \sqrt{\alpha} \approx 0{,}085</math> kleiner als nach Planck (<math> \alpha = \frac {e^2}{4 \pi \varepsilon_0 \cdot \hbar c} \approx \frac{1}{137}</math> ist die [[Feinstrukturkonstante]]).


Die Stoney-Einheiten werden heute praktisch nicht mehr benutzt, sind aber von historischem Interesse.
Die Stoney-Einheiten werden heute praktisch nicht mehr benutzt, sind aber von historischem Interesse.


=== Teilchenphysik ===
=== Teilchenphysik ===
{| class="wikitable float-right"
{| class="wikitable float-right" style="text-align:center;"
|+ Einige Teilchenphysik-Einheiten in SI-Einheiten
|+ Einige Teilchenphysik-Einheiten in SI-Einheiten
|- class="hintergrundfarbe7"
|-  
! Größe
! rowspan="2"| Größe
| geschriebene Einheit
! colspan="2"| Einheit
| tatsächliche Einheit
! rowspan="2"| Wert<br />in SI-Einheiten
| Wert in SI-Einheiten
|-
|-
|class="hintergrundfarbe8" style="text-align:right"| '''Energie'''
! geschrieben
! tatsächlich
|-
! Energie
|<math> 1\, \mathrm{eV}</math>
|<math> 1\, \mathrm{eV}</math>
|&nbsp;
|&nbsp;
|<math>1{,}60218 \cdot 10^{-19}\ </math> [[Joule|J]]
| style="text-align:left;" | {{ZahlExp|1,602|-19|post=[[Joule|J]]}}
|-
|-
|class="hintergrundfarbe8" style="text-align:right"| '''Länge'''
! Länge
|<math>\frac{1}{1\,\mathrm{eV}} </math>
|<math>\frac{1}{1\,\mathrm{eV}} </math>
|<math>\frac{c \hbar}{1\,\mathrm{eV}}</math>
|<math>\frac{c \hbar}{1\,\mathrm{eV}}</math>
|<math>1{,}97327 \cdot 10^{-7}\ </math> [[Meter|m]]
| style="text-align:left;" | {{ZahlExp|1,973|-7|post=[[Meter|m]]}}
|-
|-
|align="right" class="hintergrundfarbe8"  |'''Zeit'''
! Zeit
|<math>\frac{1}{1\,\mathrm{eV}}</math>
|<math>\frac{1}{1\,\mathrm{eV}}</math>
|<math>\frac{\hbar}{1\,\mathrm{eV}}</math>
|<math>\frac{\hbar}{1\,\mathrm{eV}}</math>
|<math>6{,}58212 \cdot 10^{-16}\ </math> [[Sekunde|s]]
| style="text-align:left;" | {{ZahlExp|6,582|-16|post=[[Sekunde|s]]}}
|-
|-
|align="right" class="hintergrundfarbe8"  |'''Masse'''
! Masse
|<math>1\,\mathrm{eV}</math>
|<math>1\,\mathrm{eV}</math>
|<math> \frac{1\,\mathrm{eV}}{c^2}</math>
|<math> \frac{1\,\mathrm{eV}}{c^2}</math>
|<math>1{,}78266 \cdot 10^{-36}\ </math> [[Kilogramm|kg]]
| style="text-align:left;" | {{ZahlExp|1,783|-36|post=[[Kilogramm|kg]]}}
|-
|-
|class="hintergrundfarbe8" style="text-align:right"|'''Temperatur'''
! |Dichte
|<math>1\,\mathrm{eV}^4</math>
|<math> \frac{1\,\mathrm{eV}^4}{c^5\hbar^3}</math>
| style="text-align:left;" | {{ZahlExp|2,320|-16|post=kg/m<sup>3</sup>}}
|-
! Impuls
|<math>1\,\mathrm{eV}</math>
|<math> \frac{1\,\mathrm{eV}}{c}</math>
| style="text-align:left;"| {{ZahlExp|5,344|-28|post=[[Newton (Einheit)|N·]][[Sekunde|s]]}}
|-
! Temperatur
|<math> 1\,\mathrm{eV}</math>
|<math> 1\,\mathrm{eV}</math>
|<math>\frac{1\,\mathrm{eV}}{k_\mathrm{B}}</math>
|<math>\frac{1\,\mathrm{eV}}{k_\mathrm{B}}</math>
|<math>1{,}16044 \cdot 10^{4}\ </math> [[Kelvin|K]]
| style="text-align:left;" | {{ZahlExp|1,160|4|post=[[Kelvin|K]]}}
|}
|}
In der [[Teilchenphysik]] ''([[Hochenergiephysik]])'' spielt die [[Gravitation]] nur eine untergeordnete Rolle. Daher wird hier die Gravitationskonstante im [[Internationales Einheitensystem|SI-System]] belassen. Gleich&nbsp;1 gesetzt werden lediglich:
In der [[Teilchenphysik]] ''([[Hochenergiephysik]])'' spielt die [[Gravitation]] nur eine untergeordnete Rolle. Daher wird hier die Gravitationskonstante im [[Internationales Einheitensystem|SI-System]] belassen. Gleich&nbsp;1 gesetzt werden lediglich:
* die Lichtgeschwindigkeit: <math>c = 1</math>
* die Lichtgeschwindigkeit: <math>c = 1</math>
* das Plancksche Wirkungsquantum: <math>\hbar = 1</math>
* das reduzierte Plancksche Wirkungsquantum: <math>\hbar = 1</math>
* Boltzmann-Konstante: <math>k_\mathrm{B} = 1</math>
* die Boltzmann-Konstante: <math>k_\mathrm{B} = 1</math>
* die Elektrische Feldkonstante: <math>\varepsilon_0 = 1 </math>


Die Einheit der [[Energie]] wird dadurch nicht festgelegt; üblicherweise wird hierfür die Einheit [[Elektronvolt]] verwendet. Alle anderen Einheiten lassen sich dann durch [[Potenz (Mathematik)|Potenzen]] dieser Energieeinheit ausdrücken (vgl. Tabelle). So ist das Elektronvolt zugleich die Einheit der [[Masse (Physik)|Masse]]; dadurch wird die [[Äquivalenz von Masse und Energie]] besonders deutlich. [[Zeit]] und [[Raum (Physik)|Raum]] bekommen entsprechend dem Konzept der [[Raumzeit]] dieselbe Dimension und die Einheit&nbsp;1/eV.
Die Einheit der [[Energie]] wird dadurch nicht festgelegt; üblicherweise wird hierfür die Einheit [[Elektronvolt]] verwendet. Alle anderen Einheiten lassen sich dann durch [[Potenz (Mathematik)|Potenzen]] dieser Energieeinheit ausdrücken (vgl. Tabelle). So ist das Elektronvolt zugleich die Einheit der [[Masse (Physik)|Masse]]; dadurch wird die [[Äquivalenz von Masse und Energie]] besonders deutlich. [[Zeit]] und [[Raum (Physik)|Raum]] bekommen entsprechend dem Konzept der [[Raumzeit]] dieselbe Dimension und die Einheit&nbsp;1/eV.
Zeile 100: Zeile 205:
In der [[Atomphysik]] ist das System der Atomaren Einheiten gebräuchlich.
In der [[Atomphysik]] ist das System der Atomaren Einheiten gebräuchlich.
Hier werden auf&nbsp;1 gesetzt:
Hier werden auf&nbsp;1 gesetzt:
* die [[Elektronenmasse]]: <math>m_e = 1</math>
* die [[Elektronenmasse]]: <math>m_\mathrm e = 1</math>
* die Elementarladung: <math>e = 1</math>
* die Elementarladung: <math>e = 1</math>
* das Plancksche Wirkungsquantum: <math>\hbar = 1</math>
* das reduzierte Plancksche Wirkungsquantum: <math>\hbar = 1</math>
* die Coulomb-Konstante: <math>1/(4 \pi \varepsilon_0) = 1</math>
* die Coulomb-Konstante: <math>1/(4 \pi \varepsilon_0) = 1</math>


Zeile 111: Zeile 216:
und in Situationen mit einer dominanten Masse auch oft<ref name="valeria">Andreas Müller: ''[http://www.spektrum.de/lexikon/astronomie/gravitationsradius/155 Lexikon der Astronomie]''</ref><ref name="fuerstandwu">Steven Fuerst, Kinwah Wu: ''[https://arxiv.org/pdf/astro-ph/0406401.pdf#page=4 Radiation Transfer of Emission Lines in Curved Space-Time].'' S. 4.</ref><ref name="newmanadamo">Ezra Newman, Tim Adamo (Scholarpedia, 2014): ''[http://www.scholarpedia.org/article/Kerr-Newman_metric Kerr-Newman metric].'' [[doi:10.4249/scholarpedia.31791]]</ref>
und in Situationen mit einer dominanten Masse auch oft<ref name="valeria">Andreas Müller: ''[http://www.spektrum.de/lexikon/astronomie/gravitationsradius/155 Lexikon der Astronomie]''</ref><ref name="fuerstandwu">Steven Fuerst, Kinwah Wu: ''[https://arxiv.org/pdf/astro-ph/0406401.pdf#page=4 Radiation Transfer of Emission Lines in Curved Space-Time].'' S. 4.</ref><ref name="newmanadamo">Ezra Newman, Tim Adamo (Scholarpedia, 2014): ''[http://www.scholarpedia.org/article/Kerr-Newman_metric Kerr-Newman metric].'' [[doi:10.4249/scholarpedia.31791]]</ref>
* die zentrale Masse: <math>M = 1</math>
* die zentrale Masse: <math>M = 1</math>
* die Coulomb-Konstante: <math>k_{C} = 1</math>
* die Coulomb-Konstante: <math>k_\mathrm C = 1</math>


=== Quantenchromodynamik ===
=== Quantenchromodynamik ===
In der [[Quantenchromodynamik]] ist das [[Proton]] von zentralem Interesse. Hier werden auf 1 gesetzt:
In der [[Quantenchromodynamik]] ist das [[Proton]] von zentralem Interesse. Hier werden auf 1 gesetzt:
* die Lichtgeschwindigkeit: <math>c = 1</math>
* die Lichtgeschwindigkeit: <math>c = 1</math>
* die [[Protonenmasse]]: <math>m_p = 1</math>
* die [[Protonenmasse]]: <math>m_\mathrm p = 1</math>
* das Plancksche Wirkungsquantum: <math>\hbar = 1</math>
* das reduzierte Plancksche Wirkungsquantum: <math>\hbar = 1</math>
* die Boltzmann-Konstante: <math>k_\mathrm{B} = 1</math>
* die Boltzmann-Konstante: <math>k_\mathrm{B} = 1</math>


== Sonstige Vorschläge ==
== Sonstige Vorschläge ==
Mit [[CODATA]]-2014<ref name="CODATA2014">{{Literatur |Autor=Peter J. Mohr, David B. Newell, Barry N. Taylor |Titel=CODATA Recommended Values of the Fundamental Physical Constants: 2014 |Sammelwerk=Zenodo |Datum=2015 |arxiv=1507.07956 |DOI=10.5281/zenodo.22826}}</ref> wurden vorgeschlagen
Mit [[CODATA]]-2014<ref name="CODATA2014">{{Literatur |Autor=Peter J. Mohr, David B. Newell, Barry N. Taylor |Titel=CODATA Recommended Values of the Fundamental Physical Constants: 2014 |Sammelwerk=Zenodo |Datum=2015 |arXiv=1507.07956 |DOI=10.5281/zenodo.22826}}</ref> wurden vorgeschlagen
* eine Liste mit sieben natürlichen Einheiten ("n.u."), die teils ungewöhnliche natürliche Größen verwenden: <math>\hbar/(m_ec)</math> für die Länge, <math>\hbar/(m_ec^2)</math> für die Zeit, <math>m_e</math> für die Masse (Ladung und Temperatur sind nicht aufgeführt),
* eine Liste mit sieben natürlichen Einheiten ''(n.u.)'', die teils ungewöhnliche natürliche Größen verwenden: <math>\hbar/(m_\mathrm ec)</math> für die Länge, <math>\hbar/(m_\mathrm ec^2)</math> für die Zeit, <math>m_\mathrm e</math> für die Masse (Ladung und Temperatur sind nicht aufgeführt),
* und eine Liste mit 23 atomaren Einheiten ("a.u."), ebenfalls mit teils ungewöhnlichen natürlichen Größen: [[Bohrscher Radius]]  <math>a_0</math> für die Länge, <math>\hbar/E_h</math> für die Zeit (<math>E_h</math> ist die [[Hartree-Energie]]), <math>m_e</math> für die Masse, <math>e</math> für die Ladung (die Temperatur wird nicht aufgeführt).
* und eine Liste mit 23 atomaren Einheiten ''(a.u.)'', ebenfalls mit teils ungewöhnlichen natürlichen Größen: [[Bohrscher Radius]]  <math>a_0</math> für die Länge, <math>\hbar/E_\mathrm h</math> für die Zeit (<math>E_\mathrm h</math> ist die [[Hartree-Energie]]), <math>m_\mathrm e</math> für die Masse, <math>e</math> für die Ladung (die Temperatur wird nicht aufgeführt).


== Literatur ==
== Literatur ==

Aktuelle Version vom 3. März 2022, 12:03 Uhr

Der Titel dieses Artikels ist mehrdeutig. Die Bedeutung im Zusammenhang der Informationstheorie findet sich im Artikel natürliche Informationseinheit

Als Natürliche Einheiten in der Physik werden Systeme von Maßeinheiten bezeichnet, die durch die Werte von Naturkonstanten gegeben sind. Durch Verwendung solcher Einheiten vereinfachen sich oft physikalische Formeln. Betrachtet man die betreffenden Naturkonstanten außerdem als „dimensionslos“, also als reine Zahlen, vereinfacht dies die Formeln weiter. Wenn beispielsweise die Lichtgeschwindigkeit c gleich der Zahl 1 gesetzt wird, vereinfacht sich die bekannte Masse-Energie-Äquivalenz E = mc2 zu E = m, außerdem haben dann Energie, Impuls und Masse dieselbe Dimension.

Hiervon zu unterscheiden ist die Definition von Maßeinheiten mit Hilfe von Naturkonstanten. Im Internationalen Einheitensystem SI werden seit 1983 die Lichtgeschwindigkeit und seit der Revision von 2019 weitere fundamentale Naturkonstanten zur Definition von Einheiten verwendet. Diese Naturkonstanten behalten dabei ihre bisherige Dimension und werden nicht zu natürlichen Einheiten.

Grundlagen für natürliche Einheiten

Natürliche Einheiten sollen sich zur besonders einfachen Beschreibung von Naturvorgängen eignen. So ist z. B. die Vakuumlichtgeschwindigkeit $ c $ die Obergrenze für die Geschwindigkeit, mit der sich physikalische Wirkungen ausbreiten können, und $ c^{2} $ ist der Umrechnungsfaktor zwischen Masse und Ruheenergie eines Teilchens. Die Elementarladung $ e $ (abgesehen von einem Faktor ⅓ für die Quarks) und das Reduzierte Plancksche Wirkungsquantum $ \hbar $ (abgesehen von einem Faktor ½ für den Spin) – sind die kleinsten möglichen von Null verschiedenen Werte für elektrische Ladung bzw. Drehimpuls.

Als Grundlage können daher dienen:

sowie Eigenschaften wichtiger Teilchen wie:

Da mehr Naturkonstanten zur Verfügung stehen, als das übliche Einheitensystem Dimensionen hat, können verschiedene natürliche Einheitensysteme gebildet werden. Welche dieser Grundlagen gewählt werden, hängt vom jeweiligen Teilgebiet der Physik ab.

Vorteile und Nachteile

Die betreffenden Naturkonstanten haben, wenn sie in den entsprechenden natürlichen Einheiten angegeben werden, sämtlich den Zahlenwert 1. Daher treten die Konstanten gar nicht in Erscheinung, wenn in konkreten Berechnungen Zahlenwertgleichungen benutzt werden.

Meist werden die Konstanten zusätzlich als dimensionslos angesetzt, so dass alle Formeln zu Zahlenwertgleichungen werden und erheblich einfacher aussehen. Diesem formalen Vorteil steht der Nachteil gegenüber, dass man auch die Ergebnisse aller Berechnungen zunächst als reine Zahlen erhält. Die richtigen Dimensionen und Einheiten ergeben sich erst durch anschließendes Umrechnen in ein „gewöhnliches“ Einheitensystem. Eine Dimensionsbetrachtung beider Gleichungsseiten zur Fehlerkontrolle ist bei Gleichungen in einem solchen natürlichen Einheitensystem nicht möglich. Auch weichen die Größenordnungen der natürlichen Einheiten meist weit von den im Alltag und in der Technik üblichen ab; deshalb ist die allgemeine Verwendung eines natürlichen Einheitensystems anstelle z. B. des Internationalen Einheitensystems (SI) nie ernsthaft erwogen worden.

Natürliche Einheitensysteme

Übersicht über natürliche Einheitensysteme und deren Grundlagen
Planck-Einheiten Stoney-Einheiten Teilchen­physik Atomare Einheiten Relativitäts­theorie Quanten­chromodynamik
Lichtgeschwindigkeit im Vakuum

$ c $

$ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
Elementarladung

$ e $

$ 1 $ $ 1 $
Elektrische Feldkonstante

$ \varepsilon _{0} $

$ {\frac {1}{4\pi }} $ $ {\frac {1}{4\pi }} $ $ 1 $ $ {\frac {1}{4\pi }} $ $ \left({\frac {1}{4\pi }}\right) $
Coulomb-Konstante

$ k_{C}={\frac {1}{4\pi \varepsilon _{0}}} $

$ 1 $ $ 1 $ $ {\frac {1}{4\pi }} $ $ 1 $ $ \left(1\right) $
Gravitationskonstante

$ G $

$ 1 $ $ 1 $ $ 1 $
Boltzmann-Konstante

$ k_{\mathrm {B} } $

$ 1 $ $ 1 $ $ 1 $
Reduziertes Plancksches Wirkungsquantum

$ \hbar ={\frac {h}{2\pi }} $

$ 1 $ $ 1 $ $ 1 $ $ 1 $
Elektronenmasse

$ m_{\mathrm {e} } $

$ 1 $
Protonenmasse

$ m_{\mathrm {p} } $

$ 1 $

Planck-Einheiten

Die konsequenteste Umsetzung der natürlichen Einheiten findet sich bei den 1899 von Max Planck vorgeschlagenen Planck-Einheiten. In diesem Einheitensystem werden gesetzt:

  • die Lichtgeschwindigkeit: $ c=1 $
  • das reduzierte Plancksche Wirkungsquantum: $ \hbar =1 $ (damit ist $ h=2\pi $)
  • die Newtonsche Gravitationskonstante: $ G=1 $
  • die Boltzmann-Konstante: $ k_{\mathrm {B} }=1 $
  • die Coulomb-Konstante: $ k_{\mathrm {C} }=1 $ (damit ist $ \varepsilon _{0}=(4\pi k_{\mathrm {C} })^{-1}=(4\pi )^{-1} $).

Dieses Einheitensystem gilt deshalb als fundamental, weil die zugrundegelegten Naturkonstanten die allgemeinsten Zusammenhänge von Raum und Zeit betreffen und für alle Arten von Teilchen und Wechselwirkungen gelten. (Die Konstante $ k_{\mathrm {B} } $ wird hier nur für die Anpassung der Temperaturskala an die Energieskala benötigt.)

Mithilfe der Naturgesetze, die die o. g. Konstanten definieren, lassen sich die Planck-Einheiten auch durch folgende Beziehungen einführen:

  • Während der Zeiteinheit legt Licht im Vakuum eine Längeneinheit zurück. (Naturgesetz: $ r=c\cdot t $)
  • Die Energieeinheit ist die Quantenenergie einer Schwingung, deren Periode gleich einer Zeiteinheit ist. (Naturgesetz: $ E=h/t $)
  • Die Einheitsmasse ist die Masse, die einer Energieeinheit äquivalent ist. (Naturgesetz: $ E=m\cdot c^{2} $)
  • Die Längeneinheit ist derjenige Abstand zweier Körper von je einer Masseneinheit, in dem ihre Gravitationsenergie die Größe einer Energieeinheit hat. (Naturgesetz: $ E=G\cdot m^{2}/r $)

Stoney-Einheiten

Das erste natürliche Einheitensystem wurde 1874 von George Johnstone Stoney vorgeschlagen, nachdem er mit dem Konzept einheitlicher Ladungsträger in den Atomen die letzte dazu nötige Naturkonstante gefunden hatte. In Stoneys Einheitensystem werden gleich 1 gesetzt:

  • die Elementarladung: $ e=1 $
  • die Lichtgeschwindigkeit: $ c=1 $
  • die Newtonsche Gravitationskonstante: $ G=1 $

Zur Definition der Ladung benutzte Stoney das elektrostatische cgs-System, so dass auch die Coulomb-Konstante $ {\frac {1}{4\pi \varepsilon _{0}}}=1 $ ist. Nach Stoney sind die natürlichen Einheiten für Länge, Masse und Zeit daher um den Faktor $ {\sqrt {\alpha }}\approx 0{,}085 $ kleiner als nach Planck ($ \alpha ={\frac {e^{2}}{4\pi \varepsilon _{0}\cdot \hbar c}}\approx {\frac {1}{137}} $ ist die Feinstrukturkonstante).

Die Stoney-Einheiten werden heute praktisch nicht mehr benutzt, sind aber von historischem Interesse.

Teilchenphysik

Einige Teilchenphysik-Einheiten in SI-Einheiten
Größe Einheit Wert
in SI-Einheiten
geschrieben tatsächlich
Energie $ 1\,\mathrm {eV} $   1.602e-19 J
Länge $ {\frac {1}{1\,\mathrm {eV} }} $ $ {\frac {c\hbar }{1\,\mathrm {eV} }} $ 1.973e-7 m
Zeit $ {\frac {1}{1\,\mathrm {eV} }} $ $ {\frac {\hbar }{1\,\mathrm {eV} }} $ 6.582e-16 s
Masse $ 1\,\mathrm {eV} $ $ {\frac {1\,\mathrm {eV} }{c^{2}}} $ 1.783e-36 kg
Dichte $ 1\,\mathrm {eV} ^{4} $ $ {\frac {1\,\mathrm {eV} ^{4}}{c^{5}\hbar ^{3}}} $ 2.320e-16 kg/m3
Impuls $ 1\,\mathrm {eV} $ $ {\frac {1\,\mathrm {eV} }{c}} $ 5.344e-28 s
Temperatur $ 1\,\mathrm {eV} $ $ {\frac {1\,\mathrm {eV} }{k_{\mathrm {B} }}} $ 1.160e4 K

In der Teilchenphysik (Hochenergiephysik) spielt die Gravitation nur eine untergeordnete Rolle. Daher wird hier die Gravitationskonstante im SI-System belassen. Gleich 1 gesetzt werden lediglich:

  • die Lichtgeschwindigkeit: $ c=1 $
  • das reduzierte Plancksche Wirkungsquantum: $ \hbar =1 $
  • die Boltzmann-Konstante: $ k_{\mathrm {B} }=1 $
  • die Elektrische Feldkonstante: $ \varepsilon _{0}=1 $

Die Einheit der Energie wird dadurch nicht festgelegt; üblicherweise wird hierfür die Einheit Elektronvolt verwendet. Alle anderen Einheiten lassen sich dann durch Potenzen dieser Energieeinheit ausdrücken (vgl. Tabelle). So ist das Elektronvolt zugleich die Einheit der Masse; dadurch wird die Äquivalenz von Masse und Energie besonders deutlich. Zeit und Raum bekommen entsprechend dem Konzept der Raumzeit dieselbe Dimension und die Einheit 1/eV.

Atomare Einheiten

In der Atomphysik ist das System der Atomaren Einheiten gebräuchlich. Hier werden auf 1 gesetzt:

  • die Elektronenmasse: $ m_{\mathrm {e} }=1 $
  • die Elementarladung: $ e=1 $
  • das reduzierte Plancksche Wirkungsquantum: $ \hbar =1 $
  • die Coulomb-Konstante: $ 1/(4\pi \varepsilon _{0})=1 $

Relativitätstheorie

In der Allgemeinen Relativitätstheorie werden gleich 1 gesetzt:

  • die Lichtgeschwindigkeit: $ c=1 $
  • die Gravitationskonstante: $ G=1 $

und in Situationen mit einer dominanten Masse auch oft[1][2][3]

  • die zentrale Masse: $ M=1 $
  • die Coulomb-Konstante: $ k_{\mathrm {C} }=1 $

Quantenchromodynamik

In der Quantenchromodynamik ist das Proton von zentralem Interesse. Hier werden auf 1 gesetzt:

  • die Lichtgeschwindigkeit: $ c=1 $
  • die Protonenmasse: $ m_{\mathrm {p} }=1 $
  • das reduzierte Plancksche Wirkungsquantum: $ \hbar =1 $
  • die Boltzmann-Konstante: $ k_{\mathrm {B} }=1 $

Sonstige Vorschläge

Mit CODATA-2014[4] wurden vorgeschlagen

  • eine Liste mit sieben natürlichen Einheiten (n.u.), die teils ungewöhnliche natürliche Größen verwenden: $ \hbar /(m_{\mathrm {e} }c) $ für die Länge, $ \hbar /(m_{\mathrm {e} }c^{2}) $ für die Zeit, $ m_{\mathrm {e} } $ für die Masse (Ladung und Temperatur sind nicht aufgeführt),
  • und eine Liste mit 23 atomaren Einheiten (a.u.), ebenfalls mit teils ungewöhnlichen natürlichen Größen: Bohrscher Radius $ a_{0} $ für die Länge, $ \hbar /E_{\mathrm {h} } $ für die Zeit ($ E_{\mathrm {h} } $ ist die Hartree-Energie), $ m_{\mathrm {e} } $ für die Masse, $ e $ für die Ladung (die Temperatur wird nicht aufgeführt).

Literatur

  • Helmut Hilscher: Elementare Teilchenphysik. Vieweg, 1996, ISBN 3-322-85004-8, S. 6–7.
  • Peter Pohling: Durchs Universum mit Naturkonstanten. Verlag Books on Demand, Norderstedt 2013, ISBN 978-3-7322-6236-6.
  • Michael Ruhrländer: Aufstieg zu den Einsteingleichungen. Einführung in die quantitative Allgemeine Relativitätstheorie. Pro Business, Berlin 2014, ISBN 978-3-86386-779-9, S. 578.

Einzelnachweise

  1. Andreas Müller: Lexikon der Astronomie
  2. Steven Fuerst, Kinwah Wu: Radiation Transfer of Emission Lines in Curved Space-Time. S. 4.
  3. Ezra Newman, Tim Adamo (Scholarpedia, 2014): Kerr-Newman metric. doi:10.4249/scholarpedia.31791
  4. Peter J. Mohr, David B. Newell, Barry N. Taylor: CODATA Recommended Values of the Fundamental Physical Constants: 2014. In: Zenodo. 2015, doi:10.5281/zenodo.22826, arxiv:1507.07956.

bs:Prirodne jedinice sh:Prirodne jedinice sr:Природне јединице