Spektroskopie (auch Spektrometrie) ist eine Gruppe von physikalischen Methoden, in denen eine Strahlung nach einer bestimmten Eigenschaft wie Energie, Wellenlänge, Masse etc. zerlegt wird. Die beobachtete Intensitätsverteilung wird Spektrum genannt, aufzeichnende Geräte heißen Spektrometer. Zur visuellen Betrachtung des Spektrums von sichtbarem Licht, die zuerst Isaac Newton gelang, dienen Spektroskope.
Die untersuchten Strahlungen umfassen den gesamten Bereich der elektromagnetischen Wellen und der mechanischen Wellen wie Schall und Wasserwellen, sowie Teilchenstrahlen z. B. aus Elektronen, Ionen, Atomen oder Molekülen. Die Spektroskopie wird eingesetzt, um die Eigenschaften der Strahlung selbst zu studieren, die Eigenschaften der Strahlenquelle herauszufinden (Emissionsspektroskopie) oder die Eigenschaften eines zwischen der Quelle und dem Spektrometer befindlichen Transportmediums zu untersuchen (Absorptionsspektroskopie).
Zeigt ein Spektrum scharfe und voneinander getrennte Intensitätsmaxima, wird es allgemein als Linienspektrum bezeichnet, andernfalls als kontinuierliches Spektrum. Oft sind Spektren aus diesen beiden Grundtypen gemischt.
Beispielsweise ist das Energie- oder Wellenlängenspektrum der Wärmestrahlung vom kontinuierlichen Typ mit einem breiten Maximum, an dessen Lage man die Temperatur des strahlenden Körpers ablesen kann. Hingegen zeigt das von Atomen ausgesandte oder absorbierte Licht ein Linienspektrum, an dem man die chemischen Elemente, zu denen die Atome gehören, eindeutig identifizieren kann (Spektralanalyse nach Kirchhoff und Bunsen, 1859). Analog zeigen die Moleküle einer chemischen Verbindung bei Untersuchung mit einem Massenspektrometer eine charakteristische Verteilung der Massen ihrer Bruchstücke. Die beiden letztgenannten spektroskopischen Methoden zeigen hohe Empfindlichkeit und werden daher bei chemischen Analysen routinemäßig zum Nachweis von Beimengungen fremder Stoffe in geringster Konzentration eingesetzt.
Spektroskopische Beobachtungen der Linienspektren der Atome und Moleküle gaben entscheidende Impulse für die Entwicklung der Atomphysik und Quantenmechanik. Die hohe Präzision, mit der viele ihrer Spektrallinien gemessen werden können, erlaubt u. a. die genaue Überprüfung von Naturgesetzen, die Bestimmung von Naturkonstanten und die Definition der Basiseinheiten Meter und Sekunde.
Ein Spektrum im Sinne dieses Artikels ist die Auftragung einer spektralen Leistungsdichte über einer Energieskala (Frequenz, Wellenzahl) bzw. einer reziproken Energieskala. Der Zusammenhang zwischen der Frequenz $ \nu \, $ einer elektromagnetischen Welle und der Energie $ E\, $ der Lichtquanten ist dabei gegeben durch
mit der Planck-Konstanten $ h\, $.
Grundlage zum Verständnis von Spektren ist der Übergang eines Systems zwischen verschiedenen Energieniveaus unter Emission oder Absorption von Photonen oder anderen Teilchen. Mit diesem kann man Absorption und Emission von Photonen durch Übergänge zwischen verschiedenen Energieniveaus eines Atoms beschreiben. Die absorbierte bzw. emittierte Energie $ \Delta E\, $ ist dabei durch das anfängliche Energieniveau $ E_{n}\, $ und dem End-Energieniveau $ E_{m}\, $ festgelegt. In der Quantenmechanik hat jeder Zustand ein Energieniveau.
Dabei gilt:
Ist $ E_{n}>E_{m}\, $, die Differenz also positiv, so handelt es sich in diesem Beispiel um Emission, bei negativen Vorzeichen, also $ E_{n}<E_{m}\, $ dann um Absorption.
Strukturen im Spektrum geben Hinweise darauf, welche Energiebeträge eine Substanz aufnehmen (absorbieren) oder abgeben (emittieren) kann. Diese Beträge entsprechen Energiedifferenzen quantenmechanischer Zustände der Probe. Das Spektrum eines Stoffes hängt insbesondere ab von dessen Konzentrationen, von Auswahlregeln und Besetzungszahlen.
Die Untersuchung der Lichtemission bzw. -absorption von Molekülen und Atomen mit Hilfe von Gitter- und Prismenspektrometern sind die ältesten spektroskopischen Verfahren. Sie werden daher auch als klassische Spektroskopie bezeichnet. Viele der grundlegenden Untersuchungen über den Aufbau des Atoms wurden erst durch die Entwicklung und Anwendung hochauflösender Gitter- und Prismenspektrometer möglich.
Die Einteilung der zahlreichen spektroskopischen Methoden und Verfahren ist vielfältig und in der Literatur nicht immer einheitlich. Allgemein unterscheidet man zunächst zwischen Methoden der Atom- und der Molekülspektroskopie. Die Atomspektroskopie umfasst spektroskopische Verfahren, die auf Emissions-, Absorptions- oder Fluoreszenzvorgängen bei Atomen zurückgehen und zur Bestimmung von chemischen Elementen eingesetzt werden. Die beobachteten Spektren sind im Allgemeinen Linienspektren. Die molekülspektroskopischen Verfahren basieren hingegen auf der Anregung und Auswertung von Rotations-, Schwingungs- und Elektronenzuständen in Molekülen. Durch die Überlagerung von Einzelzuständen werden dabei keine Linienspektren, sondern sogenannte Bandenspektren beobachtet.
Neben dieser grundlegenden Einteilung, nach der Art der untersuchten Zuständen, gibt es zahlreiche andere Unterteilungen, beispielsweise nach der Anregungsenergie der elektrischen Strahlung (z. B. Mikrowellenspektroskopie, Röntgenspektroskopie), des Aggregatzustandes (z. B. Festkörperspektroskopie) oder der Art der Anregung (z. B. Elektronenspektroskopie, Laserspektroskopie).
EM-Strahlung | Wellenlänge | Frequenzbereich | Wellenzahl | Energiebereich | untersuchte Eigenschaft | Spektroskopische Methode |
---|---|---|---|---|---|---|
Radiowellen | 100 m…1 m | 3·106…300·106 Hz | 10−4…0,01 cm−1 | 10−6…10−4 kJ/mol | Änderung des Kernspinzustandes | Kernresonanzspektroskopie (NMR, auch Hochfrequenzspektroskopie) |
Mikrowellen | 1 m…1 cm | 300·106…30·109 Hz | 0,01…1 cm−1 | 10−4…0,01 kJ/mol | Änderung des Elektronenspinzustandes oder Hyperfeinzustandes | Elektronenspinresonanz (ESR/EPR), Ramsey-Spektroskopie (Atomuhren) |
Mikrowellen | 10 cm…1 mm | 30·108…3·1011 Hz | 0.1…10 cm−1 | 0,001…0,1 kJ/mol | Änderung des Rotationszustandes | Mikrowellenspektroskopie |
Terahertzstrahlung | 1 mm…100 µm | 0,3·1012…30·1012 Hz | 10…100 cm−1 | 0,1…1 kJ/mol | Änderung des Schwingungszustandes | Submillimeterwellenspektroskopie |
Infrarotstrahlung | 1 mm…780 nm | 3·1011…3,8·1014 Hz | 10…12,84 cm−1 | 0,12…153 kJ/mol | Änderung des Schwingungszustandes | Schwingungsspektroskopie; (Infrarotspektroskopie (IR), Reflexionsspektroskopie und Ramanspektroskopie, Ultrakurzzeit-Spektroskopie) |
sichtbares Licht; UV-Strahlung | 1 µm…10 nm | 3·1014…3·1016 Hz | 104…106 cm−1 | 100…104 kJ/mol | Änderung des Zustandes der äußeren Elektronen | UV/VIS-Spektroskopie (UV/Vis), Reflexionsspektroskopie, Fotoleitungsspektroskopie, Fluoreszenzspektroskopie; Ultrakurzzeit-Spektroskopie; Atomspektroskopie; Vergleich mit Frequenzkamm |
Röntgenstrahlung | 10 nm…100 pm | 3·1016…3·1018 Hz | 106…108 cm−1 | 104…106 kJ/mol | Änderung des Zustandes der Rumpfelektronen | Röntgenspektroskopie (XRS); Elektronenspektroskopie; Auger-Elektronen-Spektroskopie (AES); Mößbauer-Spektroskopie |
Gammastrahlung | 100 pm…1 pm | 3·1018…3·1020 Hz | 108…1010 cm−1 | 106…108 kJ/mol | Änderung des Kernzustandes (Anordnung der Nukleonen) | Gammaspektroskopie |
Die Spektralanalyse des Lichts der Sonne und anderer Sterne zeigte erstmals, dass die Himmelskörper aus denselben Elementen bestehen wie die Erde. Allerdings wurde das Element Helium zuerst durch spektroskopische Untersuchungen des Sonnenlichtes identifiziert. Eine der Spektrallinien im Sonnenspektrum konnte jahrzehntelang keiner bekannten Substanz zugeordnet werden, so dass bis zum Nachweis des irdischen Vorkommens angenommen wurde, dass auf der Sonne ein unbekanntes Element existieren musste.
Weitere klassische Erfolge der astronomischen Spektralanalyse sind
Die zugehörigen Messinstrumente („Spektralapparate“) der Astrospektroskopie sind:
deutsch
englisch