Als Balmer-Serie wird eine bestimmte Folge von Emissions-Spektrallinien im sichtbaren elektromagnetischen Spektrum des Wasserstoffatoms bezeichnet, deren unteres Energieniveau in der L-Schale liegt. Sie wird beim Übergang eines Elektrons von einem höheren zum zweittiefsten Energieniveau
Weitere Serien sind die Lyman-, Paschen-, Brackett-, Pfund- und die Humphreys-Serie.
Die Spektrallinien der Balmer-Serie sind nach dem Schweizer Physiker Johann Jakob Balmer benannt, der 1885 ihre mathematische Gesetzmäßigkeit, die Balmer-Formel, erkannte.
Im sichtbaren Bereich des Wasserstoffatom-Spektrums lassen sich vier Linien beobachten, deren Abstände voneinander mit abnehmender Wellenlänge kleiner werden. Sie werden, beginnend mit der größten Wellenlänge, als Hα (H-alpha), Hβ, Hγ und Hδ bezeichnet. Ihre Wellenlängen
In dem für das menschliche Auge nicht sichtbaren ultravioletten Bereich des Spektrums wurden weitere Linien entdeckt, die fortlaufend mit Hε, Hζ usw. bezeichnet werden und deren Wellenlängen sich für ganzzahlige
Übergang von |
3 → 2 | 4 → 2 | 5 → 2 | 6 → 2 | 7 → 2 | 8 → 2 | 9 → 2 | |
Name der Linie | Hα | Hβ | Hγ | Hδ | Hε | Hζ | Hη | |
Wellenlänge in nm gemessen | 656,2793 | 486,1327 | 434,0466 | 410,1738 | 397,0075 | 388,8052 | 383,5387 | |
Wellenlänge in nm berechnet | 656,278 | 486,132 | 434,045 | 410,1735 | 397,0074 | 388,8057 | 383,5397 | (364,56) |
Farbe | Rot | Blau-Grün | Violett | Violett | Violett | Violett | Ultraviolett | Ultraviolett |
Sichtbarkeit (für das menschliche Auge) | sichtbar | nicht sichtbar |
Die Folge konvergiert also für wachsende
Stellt man die Balmer-Formel nach dem Kehrwert der Wellenlänge, der Wellenzahl
um, lässt die von Balmer gefundene Gleichung sich mit
schreiben, in der
die nach dem schwedischen Physiker Johannes Rydberg benannte Rydberg-Konstante ist und für
Bis zu diesem Zeitpunkt allerdings waren im Wasserstoffspektrum nur die sichtbaren Linien für
Die Gleichung von Rydberg beschreibt das Wasserstoffspektrum recht genau. Bei den meisten anderen Atomen liefert sie jedoch keine korrekten Ergebnisse. Einen Fortschritt in der Beschreibung der Atomspektren lieferte im Jahr 1908 der Schweizer Mathematiker Walter Ritz. Er entdeckte das nach ihm benannte Ritzsche Kombinationsprinzip:
Vereinfacht ausgedrückt bedeutet dies, dass sich aus zwei bekannten Linien eine mögliche dritte Linie berechnen lässt. Jedoch lassen sich nicht alle dieser berechneten Linien beobachten. Welche Linien wirklich auftreten, konnte Ritz nicht erklären.
Die bis zu diesem Zeitpunkt rein empirisch gefundenen Formeln ließen sich erstmals mit dem Bohrschen Atommodell verstehen. Danach sind die Spektrallinien auf den Übergang von Elektronen auf ein anderes Energieniveau zurückzuführen. Mit dem Modell von Bohr erhält man als allgemeine Gleichung für diese Übergänge:
Das erste Glied in der Klammer,
Name | n1 | n2 | Formel | Spektralbereich/Farbe |
---|---|---|---|---|
Lyman-Serie | 1 | 2, 3, 4, … | Vakuum-UV (121 nm → 91 nm) | |
Balmer-Serie | 2 | 3, 4, 5, … | rot, blaugrün, 4× violett, dann Übergang zum nahen UV → 365 nm | |
Paschen-Serie | 3 | 4, 5, 6, … | IR-A (1875 nm → 820 nm) | |
Brackett-Serie | 4 | 5, 6, 7, … | IR-B (4050 nm → 1460 nm) | |
Pfund-Serie | 5 | 6, 7, 8, … | IR-B (7457 nm → 2280 nm) |
Bereits im Bohrschen Atommodell ist, im Gegensatz zur Balmerformel, die Konstante keine rein empirische Größe. Vielmehr lässt sich der Wert direkt auf in die Rechnung eingehende Naturkonstanten zurückführen. Auch die Einschränkung auf ganzzahlige Werte für
folgen aus diesem Modell. Die Variablen
Die Abbildung oben rechts zeigt das Termschema des Wasserstoffatoms und visualisiert die obigen Gleichungen (in der Abbildung wird statt
Ganz rechts in den Serien ist gepunktet die jeweilige Seriengrenze dargestellt, d. h.
Das Elektron ist dann nicht mehr an dem Atomkern gebunden, das Atom ist ionisiert. Für die Lyman-Serie erhält man mit der Bohrschen Gleichung eine Energie von 13,6 eV. Auch dieser Wert stimmt mit dem experimentell bestimmten Wert für die Ionisationsenergie des Wasserstoffatoms im Grundzustand gut überein.
Die Frage, welche der Linien, die nach dem Ritzschen Kombinationsprinzip möglich sind, auch tatsächlich auftreten, wird durch die Auswahlregeln geklärt. Diese ergeben sich aus quantenmechanischen Rechnungen.
Der Entdecker Balmer untersuchte das von Gasentladungen in Wasserstoff ausgehende Licht, weil er vermutete, dass zwischen der Lichtemission und dem Aufbau der Atome ein ursächlicher Zusammenhang besteht. Das emittierte Licht, mit einem Gitter spektral zerlegt, zeigt die vier diskreten Linien im sichtbaren Bereich (Linienspektrum). Balmer fand 1884 das Bildungsgesetz (siehe oben) mit der Konstanten
Er hielt seine Entdeckung für einen Spezialfall einer noch unbekannten allgemeineren Gleichung, die auch für andere Elemente gültig sein könnte. Diese Vermutung wird durch spätere Untersuchungen von Spektren von Atomen oder Ionen mit nur einem Elektron in der äußersten Schale bestätigt. Ungeklärt blieb für Balmer jedoch die physikalische Bedeutung von