Die Rydberg-Formel (auch Rydberg-Ritz-Formel) wird in der Atomphysik benutzt, um das Linienspektrum des vom Wasserstoff emittierten Lichtes zu bestimmen. Sie zeigt, dass die Bindungsenergie des Elektrons im Wasserstoffatom umgekehrt proportional zum Quadrat der Hauptquantenzahl ist.
Die Formel wurde am 5. November 1888 vom schwedischen Physiker Johannes Rydberg vorgestellt; auch Walter Ritz arbeitete an ihr.
Korrekturen aufgrund von Drehimpulsen oder relativistischen Effekten werden in der Rydberg-Formel nicht berücksichtigt. Später wurde sie erweitert, um das Spektrum anderer Elemente zu bestimmen (s. u. Erweiterungen).
Dabei sind
Für die Energie des emittierten Photons gilt:
mit
Entsprechend gilt für die Energiestufen der beiden o. g. Orbits im Atom (siehe Rydberg-Energie):
Mit $ n_{1}<n_{2} $ folgt daraus:
Nachdem die Bedeutung der Hauptquantenzahl $ n $ im Term $ {\tfrac {R}{n^{2}}} $ für die Energieniveaus erkannt worden war, bürgerten sich die Begriffe Termsymbol und Termschema für damit zusammenhängende Werkzeuge ein.
Mit $ n_{1}=1 $ (Grundzustand) und $ n_{2}\in (2..\infty ) $ erhält man eine Serie von Spektrallinien, die auch Lyman-Serie genannt wird. Der erste Übergang der Serie hat eine Wellenlänge von 121 nm, die Seriengrenze liegt bei 91 nm. Analog ergeben sich die anderen Serien:
$ n_{1} $ | $ n_{2} $ | Name | Wellenlänge des ersten Übergangs (α-Linie) |
konvergiert gegen Seriengrenze |
---|---|---|---|---|
1 | 2 bis ∞ | Lyman-Serie | 121 nm | 91,13 nm |
2 | 3 bis ∞ | Balmer-Serie | 656 nm | 364,51 nm |
3 | 4 bis ∞ | Paschen-Serie | 1.874 nm | 820,14 nm |
4 | 5 bis ∞ | Brackett-Serie | 4.051 nm | 1458,03 nm |
5 | 6 bis ∞ | Pfund-Serie | 7.456 nm | 2278,17 nm |
6 | 7 bis ∞ | Humphreys-Serie | 12.365 nm | 3280,56 nm |
Für wasserstoffähnliche Ionen, d. h. Ionen, die nur ein einziges Elektron besitzen, wie z. B. He+, Li2+, Be3+ oder Na10+, lässt sich obige Formel erweitern zu:
mit
Eine weitere Verallgemeinerung auf die Lichtemission von Atomen, die in ihrer äußersten Schale ein einzelnes Elektron besitzen, darunter aber evtl. weitere Elektronen in abgeschlossenen Schalen, führt zum Moseleyschen Gesetz.