Die Euler-Gleichungen (oder auch eulerschen Gleichungen) der Strömungsmechanik sind ein von Leonhard Euler entwickeltes mathematisches Modell zur Beschreibung der Strömung von reibungsfreien elastischen Fluiden. Im engeren Sinne ist mit Euler-Gleichungen die Impulsgleichung für reibungsfreie Strömungen gemeint. Diese wird manchmal auch als Eulersche Gleichung bezeichnet. Im weiteren Sinne wird diese um die Kontinuitätsgleichung und die Energiegleichung erweitert und bildet dann ein System von nichtlinearen partiellen Differentialgleichungen erster Ordnung.
Die zugehörigen Impulsgleichungen sind in eulerscher Betrachtungsweise formuliert und lauten:
Der Vektor
Die Navier-Stokes-Gleichungen beinhalten diese Gleichungen als den Sonderfall, in dem die innere Reibung (Viskosität) und die Wärmeleitung des Fluids vernachlässigt werden. Anwendung finden die Euler-Gleichungen bei laminaren Strömungen, wie sie in technischen Rohrströmungen oder in der Flugzeugentwicklung in guter Näherung angenommen werden können. Bei Inkompressibilität lässt sich aus den Euler-Gleichungen die Bernoulli-Gleichung ableiten und bei zusätzlich wirbelfreier Strömung ergeben sich Potentialströmungen.
Die Euler-Gleichungen können auf verschiedene Weise hergeleitet werden: Ein verbreiteter Ansatz wendet das Transporttheorem von Reynolds auf das zweite newtonsche Axiom an. Das Transporttheorem beschreibt die zeitliche Änderung einer physikalischen Größe in einem bewegten Kontrollvolumen.
Ein weiterer Ansatz geht von der Boltzmann-Gleichung aus: Der Kollisionsoperator wird dort mit drei möglichen Termen multipliziert, den sog. Kollisionsinvarianten. Nach Integration über die Teilchengeschwindigkeit entstehen Kontinuitätsgleichung, Impulsgleichung und Energiebilanz. Schließlich wird eine Skalierung für große Zeit- und Raumabmessungen durchgeführt (Hydrodynamische Limites), und das Ergebnis sind die erweiterten Euler-Gleichungen.
Der wesentliche Teil der Euler-Gleichungen ist das erste Cauchy-Euler’sche Bewegungsgesetz, das dem Impulssatz entspricht:
Auf der linken Seite der Gleichung steht in den eckigen Klammern die substanzielle Beschleunigung, bestehend aus der lokalen und der konvektiven Beschleunigung:
Zusätzlich zu den eingangs beschriebenen Variablen tritt der Cauchy’sche Spannungstensor
In kartesischen Koordinaten lautet diese Gleichung im zweidimensionalen Fall für
In Zylinderkoordinaten schreiben sich die Gleichungen[L 2]
Der Operator
Obige Bewegungsgleichung ist bei vernachlässigbarer Beschleunigung
oder in alternativer Schreibweise
Das Rechenzeichen „
ist der konvektive Transport der Impulsdichte, seine Divergenz
ist der konvektive Impulsfluss.
Integriert man über ein ortsfestes Volumen
Hierbei ist
Umgekehrt folgen die Euler-Gleichungen aus der Impulsbilanz an beliebigen, hinreichend glatt berandeten Volumina
Obige Impulsgleichung stellt (selbst mit passenden Rand- und Anfangsbedingungen) kein geschlossenes System dar. Intuitiv sieht man dies bereits, da man im
Die Annahme der Inkompressibilität ist für Flüssigkeiten bei moderaten Drücken und für Gaströmungen weit unterhalb der Schallgeschwindigkeit eine häufig sinnvolle Näherung. Inkompressible Fluide sind dichtebeständig (
geschlossen. Die Lösung der Gleichungen vereinfacht sich dadurch, dass sich der Druck durch Bildung der Rotation aus der Euler-Gleichung eliminieren lässt:[L 3]
Hier wurde die Grassmann-Entwicklung[F 1] eingesetzt und ausgenutzt, dass Gradientenfelder immer rotationsfrei sind.
Der Druck berechnet sich bei Inkompressibilität nicht aus einer Zustandsgleichung der Form
Der Operator
Bei kompressiblen Fluiden und insbesondere, wenn die Temperatur als weitere Unbekannte eine Rolle spielt, benötigt man außerdem die Energieerhaltung und Zustandsgleichungen (d. h. konstitutive Gleichungen) des zu modellierenden Fluids. Im dreidimensionalen Fall ergeben sich so die fünf gekoppelten Differentialgleichungen
wobei
Die erste Gleichung in diesem System ist die Kontinuitätsgleichung für den kompressiblen Fall
die zweite bis vierte Gleichung sind die Impulsgleichungen (Euler-Gleichungen im engeren Sinn, siehe oben) und die letzte Gleichung ist die Energiebilanz. Zusammen mit einer thermischen Zustandsgleichung, welche Druck
In diesem Modell werden Wärmeleitung und innere Reibung vernachlässigt. Berücksichtigt man auch Reibungs- und gegebenenfalls Wärmeleitungseffekte, so erhält man an Stelle der Euler-Gleichungen die Navier-Stokes-Gleichungen für kompressible Fluide.
An festen Wänden wird als Bedingung gesetzt, dass die Geschwindigkeit in Normalenrichtung
für alle
Außerdem können Druckrandbedingungen, wie an der freien Oberfläche eines Gewässers, auftreten. Weil Druck nur auf materielle Teilchen ausgeübt werden kann, ist eine solche Oberfläche eine materielle Fläche, deren substantielle Zeitableitung daher verschwindet und die Randbedingung lautet dann:
für alle
Die Euler-Gleichungen gehören zur Klasse der nichtlinearen hyperbolischen Erhaltungsgleichungen. Damit treten in der Regel nach endlicher Zeit auch bei glatten Anfangsdaten Unstetigkeiten auf, etwa Schocks (Verdichtungsstöße). Unter starken Voraussetzungen existieren im relevanten Fall
Die Eigenwerte der Gleichungen sind die Geschwindigkeit in Normalenrichtung
Neben den oben erwähnten Unterschieden bei den Randbedingungen und im Hinblick auf Grenzschichtbildung, ist das Fehlen von Turbulenz ein wesentlicher Unterschied zwischen den Euler- und den Navier-Stokes-Gleichungen.
Die Euler-Gleichungen sind rotationsinvariant. Darüber hinaus sind die Flussfunktionen homogen, es gilt also
Lars Onsager vermutete 1949, dass sich schon bei der Eulergleichung Turbulenz-Phänomene zeigen, obwohl dort keine innere Reibung (Viskosität) vorhanden ist wie bei der Navier-Stokes-Gleichung. Speziell stellte er die Vermutung auf, dass die schwachen Lösungen der dreidimensionalen inkompressiblen Eulergleichung beim Exponenten der Hölder-Stetigkeit von einem Drittel einen Verhaltenswechsel zeigen: unterhalb gibt es Lösungen mit anomaler Dissipation der (kinetischen) Energie (Verletzung der Energieerhaltung), oberhalb nicht. Die Vermutung wurde nach Vorarbeiten einer Reihe von Mathematikern 2017 von Philip Isett bewiesen.
Da die Euler-Gleichungen Erhaltungsgleichungen darstellen, werden sie in der Regel mit Hilfe von Finite-Volumen-Verfahren gelöst. Umgekehrt waren die Bemühungen aus dem Bereich der Aerodynamik seit den 1950ern, die Euler-Gleichungen numerisch zu simulieren, treibende Kräfte bei der Entwicklung von Finite-Volumen-Verfahren. Da im Gegensatz zu den Navier-Stokes-Gleichungen keine Grenzschicht berücksichtigt werden muss, kann die Simulation auf vergleichsweise groben Rechengittern passieren. Die zentrale Schwierigkeit stellt die Behandlung des Euler-Flusses dar, der üblicherweise mit Hilfe von approximativen Riemann-Lösern behandelt wird. Diese liefern eine Näherung an die Lösung von Riemann-Problemen entlang von Zellkanten. Das Riemann-Problem der Euler-Gleichungen ist sogar exakt lösbar, allerdings ist die Berechnung dieser Lösung extrem aufwändig. Seit den 1980ern wurden deswegen zahlreiche approximative Löser entwickelt, angefangen mit dem Roe-Löser (Philip L. Roe) bis hin zur AUSM-Familie in den 1990ern.
Bei der Zeitintegration ist die CFL-Bedingung zu beachten. Gerade im Bereich von Machzahlen nahe null oder eins werden die Gleichungen aufgrund der unterschiedlich Eigenwertskalen sehr steif, was den Einsatz impliziter Zeitintegrationsverfahren notwendig macht: die CFL-Bedingung orientiert sich am größten Eigenwert (
Die Lösung dabei auftretender nichtlinearer Gleichungssysteme erfolgt dann entweder mit Hilfe von vorkonditionierten Newton- Krylow-Verfahren oder mit speziellen nichtlinearen Mehrgitter-Verfahren.
Aus den Euler-Gleichungen können eine Reihe gasdynamischer Grundgleichungen abgeleitet werden. Dazu gehören die eingangs erwähnte Bernoulli’sche Energiegleichung und die Potentialströmung, denen eigene Artikel gewidmet sind. Im Folgenden sollen die Wellengleichungen der linearen Akustik, die Erhaltung der kinetischen Energie der Fluidelemente in einem festen Volumen und die Stromfunktion in ebenen, dichtebeständigen und stationären Strömungen vorgestellt werden.
Gegeben sei ein ruhendes, im Gleichgewicht befindliches Gas, in dem also das Geschwindigkeitsfeld, die Dichte, der Druck und die Temperatur räumlich und zeitlich konstant sind. Dies bezeichne den Grundzustand des Gases. Betrachtet werden Größen
(I)
| ||
Die Euler-Gleichung nimmt die Form
(II)
| ||
an, denn die quadratische konvektive Beschleunigung kann gegenüber der lokalen Beschleunigung vernachlässigt werden. Partielle Zeitableitung der Massenbilanz (I) und Subtraktion der mit
In einem idealen Gas ist die Druckänderung unter den getroffenen Voraussetzungen proportional zur Änderung der Dichte,
Die Konstante
In einem konservativen Schwerefeld bleibt in einem vollständig mit einem inkompressiblen Fluid ausgefüllten, festen Volumen die kinetische Energie der Fluidelemente in der Summe konstant[L 6]. Das Fluid kann nicht zur Ruhe kommen, weil
Beweis |
Um das nachzuweisen, ist zunächst festzustellen, dass in einem inkompressiblen Fluid die Divergenz der Geschwindigkeit verschwindet und die Dichte konstant ist. Damit lauten die Euler-Gleichungen in einem konservativen Schwerefeld mit Der aufgesetzte Punkt bezeichnet die substantielle Zeitableitung. Von der gesamten kinetischen Energie im festen Volumen Der letzte Term integriert die Leistung des Drucks und des Schwerefelds, die gleich der Änderung der kinetischen Energie ist. In einem inkompressiblen Fluid gilt wegen der Produktregel: Das bedeutet, dass wegen |
Betrachtet wird eine in der x-y-Ebene stattfindende, stationäre Strömung. Die Bedingung
und wird identisch erfüllt, wenn sich die Geschwindigkeitskomponenten aus den Ableitungen einer skalaren Funktion gemäß
berechnen. Die Funktion