Die Dirac-Matrizen (nach dem britischen Physiker Paul Dirac), auch Gamma-Matrizen genannt, sind vier Matrizen, die der Dirac-Algebra genügen. Sie treten in der Dirac-Gleichung auf.
Die Dirac-Matrizen $ \gamma ^{0},\,\gamma ^{1}\,,\gamma ^{2}\, $ und $ \,\gamma ^{3}\, $ erfüllen definitionsgemäß die Dirac-Algebra, das heißt, die algebraischen Bedingungen
Diese Bedingungen betreffen Antikommutatoren, also die Summe der Produkte zweier Matrizen in beiden Reihenfolgen,
In Indexnotation, in der $ \mu $ und $ \nu $ für Zahlen aus $ \{0,1,2,3\} $ stehen, schreiben sich die Bedingungen an die Dirac-Matrizen zusammenfassend als
Dabei sind $ \eta ^{\mu \nu } $ die Komponenten der Minkowski-Metrik mit Signatur (1,−1,−1,−1) und $ I $ ist die Einheitsmatrix in den Spinor-Indices der Dirac-Matrizen.
Zusätzlich zu den vier Gamma-Matrizen definiert man noch die Matrix
Sie ist ihr eigenes Inverses, $ \gamma ^{5}\gamma ^{5}=I\,, $ ist hermitesch, antivertauscht mit den Gamma-Matrizen, $ \gamma ^{5}\gamma ^{\mu }=-\gamma ^{\mu }\gamma ^{5}\,, $ und demnach mit jedem Produkt von Gamma-Matrizen mit einer ungeraden Anzahl von Faktoren.
Die Gamma-Matrizen erzeugen eine Clifford-Algebra. Jede irreduzible Darstellung dieser Algebra durch Matrizen besteht aus $ 4\times 4 $-Matrizen. Die Elemente des Vektorraumes, auf den sie wirken, heißen Spinoren. Verschiedene Darstellungen der Dirac-Algebra sind einander äquivalent, das heißt, sie unterscheiden sich nur durch die gewählte Basis. Insbesondere sind die negativen transponierten Matrizen $ -\gamma ^{\mu \,{\text{T}}} $ und die hermitesch adjungierten Matrizen $ \gamma ^{\mu \,\dagger } $ den Matrizen $ \,\gamma ^{\mu }\, $ äquivalent, denn sie erfüllen ebenfalls die Dirac-Algebra. Es gibt daher eine Matrix $ A $ und eine Matrix $ C $, so dass
Die Matrix $ A $ ist zur Konstruktion von Skalaren, Vektoren und Tensoren aus Spinoren wichtig, die Matrix $ C $ tritt bei der Ladungskonjugation auf.
Jedes Produkt mehrerer Dirac-Matrizen lässt sich bis auf ein Vorzeichen als Produkt verschiedener Dirac-Matrizen in lexographischer Ordnung schreiben, denn das Produkt zweier verschiedener Gamma-Matrizen kann auf Kosten eines Vorzeichens umgeordnet werden. Zudem ist das Quadrat jeder Gamma-Matrix 1 oder −1. Die Produkte verschiedener Gamma-Matrizen bilden zusammen mit der Eins-Matrix und den negativen Matrizen eine Gruppe mit den 32 Elementen,
Da jede Darstellung einer endlichen Gruppe bei geeigneter Basiswahl unitär ist, ist auch jede Darstellung der Gamma-Matrizen bei geeigneter Wahl der Basis unitär. Zusammen mit der Dirac-Algebra heißt dies, dass $ \gamma ^{0} $ hermitesch und die drei anderen $ \gamma $-Matrizen antihermitesch sind,
In unitären Darstellungen bewirkt $ A=\gamma ^{0} $ die Äquivalenztransformation zu den adjungierten Matrizen
Mithilfe der Eigenschaften von $ \gamma ^{5} $ kann gezeigt werden, dass die Spur jedes Produktes von Gamma-Matrizen mit einer ungeraden Anzahl von Faktoren verschwindet.
Im vorletzten Schritt wurde dabei verwendet, dass die Spur eines Produktes sich bei zyklischer Vertauschung der Faktoren nicht ändert und demnach $ {\text{Spur}}\,(\gamma ^{5}\,B)={\text{Spur}}\,(B\,\gamma ^{5}) $ gilt.
Für die Spur eines Produktes von zwei Gamma-Matrizen gilt (weil die Spur zyklisch ist)
Die Spur von vier Gamma-Matrizen reduziert man mit der Dirac-Algebra auf die Spur von zwei:
Daher gilt:
Falls also verschiedene Dirac-Matrizen in einem Produkt nicht paarweise auftauchen, verschwindet die Spur des Produktes. Daraus folgt unter anderem, dass die sechzehn Matrizen, die man als Produkt von Null bis vier verschiedenen Gamma-Matrizen erhält, linear unabhängig sind.
Dirac führte die Gamma-Matrizen ein, um die Klein-Gordon-Gleichung, die eine Differentialgleichung zweiter Ordnung ist, in eine Gleichung erster Ordnung umzuwandeln.
In natürlichen Einheiten kann die Dirac-Gleichung wie folgt geschrieben werden
wobei $ \psi $ ein Dirac-Spinor ist.
Multipliziert man beide Seiten mit $ -(\mathrm {i} \gamma ^{\nu }\partial _{\nu }+m) $ erhält man
also gerade die Klein-Gordon-Gleichung für ein Teilchen der Masse $ m $.
Die sechs Matrizen
bilden die Basis einer Lie-Algebra, die der Lie-Algebra der Lorentztransformationen isomorph ist. Sie erzeugen die zu Lorentztransformationen (die stetig mit der 1 zusammenhängen) gehörigen Transformationen der Spinoren $ \psi $.
Aus $ (\gamma ^{5})^{2}=1 $ und $ {\text{Spur}}\,\gamma ^{5}=0 $ folgt, dass die Matrizen
Projektoren sind,
die auf zueinander komplementäre, zweidimensionale Unterräume projizieren,
Diese Unterräume unterscheiden Teilchen verschiedener Chiralität.
Weil $ \gamma ^{5} $ mit den Erzeugenden von Spinortransformationen vertauscht,
sind die Unterräume, auf die $ P_{L} $ und $ P_{R} $ projizieren, invariant unter den von $ \Sigma ^{\mu \nu } $ erzeugten Lorentztransformationen, mit anderen Worten: Die links- und rechtshändigen Anteile, $ \psi _{L}=P_{L}\psi $ und $ \psi _{R}=P_{R}\psi $, eines Spinors $ \psi $ transformieren getrennt voneinander.
Da $ P_{L} $ und $ P_{R} $ hermitesch sind, weil $ \gamma ^{5} $ hermitesch ist, gilt für
wobei $ {\bar {\psi }} $ allgemein definiert wird als $ {\bar {\psi }}=\psi ^{\dagger }\gamma ^{0} $. Die Änderung $ P_{L}\rightarrow P_{R} $ ergibt sich aus der Vertauschung von $ \gamma ^{5} $ mit $ \gamma ^{0} $. Da $ \gamma ^{5} $ mit $ \gamma ^{0} $ antikommutiert, ändert sich das Vorzeichen vor $ \gamma ^{5} $ im Projektionsoperator $ P_{L}={\frac {1-\gamma ^{5}}{2}}\rightarrow P_{R}={\frac {1+\gamma ^{5}}{2}} $. Ganz analog erhält man für $ {\bar {\psi }}_{R}={\bar {\psi }}\,P_{L} $.
Wegen $ \gamma ^{0}\gamma ^{5}\gamma ^{0}=-\gamma ^{5} $ ändert ein Term, der $ \gamma ^{5} $ enthält, unter der Paritätstransformation sein Vorzeichen, es macht also aus Skalaren Pseudoskalare und aus Vektoren Pseudovektoren.
Allgemein folgen Größen, die man aus $ {\overline {\psi }}=\psi ^{\dagger }A=\psi ^{\dagger }\gamma ^{0} $, Gamma-Matrizen und einem eventuell von $ \psi $ verschiedenen Spinor $ \chi $ zusammensetzt, einem Transformationsgesetz, das am Indexbild ablesbar ist. Es transformieren
Richard Feynman erfand die nach ihm benannte Slash-Notation (auch Feynman-Dolch oder Feynman-Dagger). In dieser Notation wird das Skalarprodukt eines Lorentzvektors mit dem Vektor der Gamma-Matrizen $ \textstyle \sum _{\mu =0}^{3}\,\gamma ^{\mu }A_{\mu } $ abgekürzt geschrieben als
Dadurch kann z. B. die Dirac-Gleichung sehr übersichtlich geschrieben werden als
oder in natürlichen Einheiten
In einer geeigneten Basis haben die Gamma-Matrizen die auf Dirac zurückgehende Form (verschwindende Matrixelemente nicht ausgeschrieben)
Diese Matrizen lassen sich kompakter mit Hilfe der Pauli-Matrizen schreiben (jeder Eintrag steht hier für eine $ 2\times 2 $-Matrix):
Die Diracmatrizen lassen sich mit Hilfe des Kronecker-Produktes auch folgendermaßen generieren:
Die nach Hermann Weyl benannte Weyl-Darstellung heißt auch chirale Darstellung. In ihr ist $ \gamma ^{5} $ diagonal,
Im Vergleich zur Dirac-Darstellung werden $ \gamma ^{0} $ und $ \gamma ^{5} $ verändert, die räumlichen $ \gamma $-Matrizen bleiben unverändert:
Die Weyldarstellung ergibt sich durch einen unitären Basiswechsel aus der Dirac-Darstellung,
Spinortransformationen transformieren in der Weyl-Basis die ersten beiden und die letzten beiden Komponenten des Dirac-Spinors getrennt.
Die chirale Darstellung ist von besonderer Bedeutung in der Weyl-Gleichung, der masselosen Dirac-Gleichung.
In der Majorana-Darstellung sind alle Gamma-Matrizen imaginär. Dann ist die Dirac-Gleichung ein reelles Differentialgleichungssystem,