Als Fermigas (nach Enrico Fermi, der es 1926 erstmals vorstellte[1]) bezeichnet man in der Quantenphysik ein System identischer Teilchen vom Typ Fermion, die in großer Anzahl vorliegen, so dass man sich zur Beschreibung auf statistische Aussagen (beispielsweise zu Temperatur, Druck, Teilchendichte) beschränkt. Anders als bei der Behandlung der Gase in der klassischen Physik wird beim Fermigas das quantentheoretische Ausschließungsprinzip berücksichtigt.
Das ideale Fermigas ist die einfachste Modellvorstellung hierzu, in der man die Wechselwirkung der Teilchen untereinander völlig vernachlässigt. Dies ist analog zum Modell des idealen Gases in der klassischen Physik und stellt eine starke Vereinfachung dar. Sie führt aber mithilfe einfacher Formeln in vielen praktisch wichtigen Fällen zu korrekten Voraussagen von klassisch nicht verständlichen Eigenschaften. Beispiele sind
Da wegen des Ausschließungsprinzips nur wenige Teilchen das (Einteilchen-)Niveau mit der tiefstmöglichen Energie (als
Darin ist
Die Formel gilt für Teilchen mit Spin
Bei einer räumlichen Dichte von 1022 Teilchen pro cm3 (etwa wie Leitungselektronen im Metall) ergibt sich die Fermienergie zu einigen Elektronenvolt. Das liegt in derselben Größenordnung wie die Energie atomarer Anregungen und wirkt sich deutlich auf das makroskopische Verhalten des Gases aus. Man spricht dann von einem entarteten Fermigas. Die Fermienergie bildet sein hervorstechendes Charakteristikum, das weitreichende Konsequenzen für die physikalischen Eigenschaften der (kondensierten) Materie hat.
Nur in extrem verdünntem Fermigas ist die Fermienergie zu vernachlässigen. Es verhält sich dann „nicht entartet“, d. h. wie ein normales (klassisches) verdünntes Gas.
Wenn ein Gas aus
Durch Umrechnen auf
Wird einem idealen Fermigas bei der in Wirklichkeit nicht erreichbaren, also hypothetischen Temperatur T=0 K (→ Dritter Hauptsatz der Thermodynamik) Energie zugeführt, müssen Teilchen aus Niveaus unterhalb der Fermienergie in Niveaus oberhalb übergehen. Im thermischen Gleichgewicht bildet sich für die Niveaus ein Verlauf der Besetzungszahlen heraus, der stetig von Eins auf Null abfällt. Dieser Verlauf, der große Bedeutung in verschiedenen physikalischen Gebieten hat, heißt Fermi-Verteilung oder Fermi-Dirac-Verteilung. Die mittlere Besetzungszahl
Hierbei ist
Die Fermi-Verteilung kann im Rahmen der statistischen Physik mit Hilfe der großkanonischen Gesamtheit hergeleitet werden.
Eine einfache Herleitung unter Rückgriff auf die klassische Boltzmann-Statistik, das Prinzip des detaillierten Gleichgewichts und des Ausschließungsprinzips folgt hier:[2]
Betrachten wir den Gleichgewichtszustand eines Fermigases bei Temperatur T im thermischen Kontakt mit einem klassischen Gas. Ein Fermion mit Energie
In Worten: Die Gesamtzahl der Übergänge eines Fermions von
Durch Einsetzen dieser Beziehung und Verwenden der oben genannten Gleichung
Diese Größe hat demnach für beide Zustände des Fermions denselben Wert. Da die Wahl dieser Zustände frei war, gilt diese Gleichheit für alle möglichen Zustände, stellt also eine für alle Einteilchenzustände im ganzen Fermigas konstante Größe dar, die wir mit
Aufgelöst nach n folgt:
Der Parameter