Kohärenter Zustand

Kohärenter Zustand

Kohärente Zustände Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\alpha\rangle (vgl. auch kohärente Strahlung) sind quantenmechanische Zustände unbestimmter Teilchenzahl, meist bei Bosonen. Wie R.J. Glauber 1963 zeigte, lässt sich die elektromagnetische Welle einer Laser-Mode am besten durch kohärente Zustände beschreiben. Nach ihm werden sie auch als Glauber-Zustände bezeichnet.

Kohärente Zustände kommen klassischen elektromagnetischen Wellen sehr nahe, weil der Erwartungswert der elektrischen Feldstärke die Form einer klassischen elektromagnetischen Welle hat, unabhängig vom Erwartungswert der Teilchenzahl.

Misst man in einem kohärenten Zustand die Teilchenzahl jeweils in einem festen Zeitintervall, so erhält man Messwerte, die einer Poisson-Verteilung genügen.

Geschichte

Der kohärente Zustand wurde von Erwin Schrödinger entdeckt, als er nach einem Zustand des quantenmechanischen harmonischen Oszillators suchte, der dem des klassischen harmonischen Oszillators entspricht.[1] Der kohärente Zustand entspricht demnach einem gaußschen Wellenpaket, das im harmonischen Potential hin- und herläuft, ohne Orts- oder Impulsunschärfe zu verändern.

Eigenschaften

Wichtige Eigenschaften eines kohärenten Zustandes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\alpha\rangle sind:

  • Normierung: Der Vorfaktor des kohärenten Zustandes dient der Normierung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle\alpha|\alpha\rangle = 1
  • Keine Orthogonalität: Kohärente Zustände sind nicht orthogonal: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle\beta|\alpha\rangle = \exp\left(\alpha \beta^* -(|\beta|^2 +|\alpha|^2)/2 \right)\neq \delta (\alpha-\beta)
  • Der kohärente Zustand ist ein rechtsseitiger Eigenzustand des Vernichtungsoperators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat a : Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat a|\alpha\rangle = \alpha |\alpha\rangle (siehe Herleitung).
Dagegen ist der Bra-Vektor ein linksseitiger Eigenzustand des Erzeugungsoperators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{\hat{a}^\dagger} mit komplex-konjugiertem Eigenwert $ \alpha ^{*} $: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle \alpha | \hat a ^\dagger = \alpha ^{*} \langle \alpha |
Der Vernichtungsoperator kann also im Gegensatz zum Erzeugungsoperator tatsächlich Eigenzustände (Rechtseigenzustände) besitzen.
Der Vernichtungsoperator verringert die maximale Teilchenzahl um eins; da ein Zustand im Fockraum aber Komponenten aller Teilchenzahlen beinhalten kann (wie es beim kohärenten Zustand zutrifft), ist damit nicht verboten, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat a Eigenzustände besitzt. Dagegen erhöht der Erzeugungsoperator die minimale Teilchenzahl eines Zustandes im Fockraum um eins; der damit entstandene Zustand kann also nicht der ursprüngliche sein.
  • In einer wechselwirkungsfreien Theorie (im harmonischen Oszillator) bleiben kohärente Zustände kohärent. Sie sind jedoch keine Eigenzustände des freien Hamilton-Operators. Vielmehr rotiert die Phase von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha mit der Oszillatorfrequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega , d. h. ein kohärenter Zustand geht in einen anderen kohärenten Zustand über.
  • Kohärente Zustände besitzen minimale Unschärfe: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle \Delta x \rangle_\alpha \langle \Delta p \rangle_\alpha = \frac{\hbar}{2} (mit dem reduzierten Planckschen Wirkungsquantum $ \hbar $)
  • In der Quantenelektrodynamik ist der kohärente Zustand ein Eigenzustand des Operators des Vektorfeldes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat A (oder, gleichbedeutend, des elektrischen Feldes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat E ). In einem kohärenten Zustand sind die Quantenfluktuationen des elektrischen Feldes identisch zu dem des Vakuumzustandes.

Darstellung im Phasenraum

Fehler beim Erstellen des Vorschaubildes:
Darstellung eines kohärenten Zustands im Phasenraum. Die Achsen entsprechen dem Real- bzw. Imaginärteil von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha .

Viele dieser Eigenschaften lassen sich im Phasenraum veranschaulichen, der von den Quadraturen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1 = \operatorname{Re}\left(\alpha\right) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_2 = \operatorname{Im}\left(\alpha\right) aufgespannt wird (siehe Abbildung):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha = X_1 + i X_2 = \left| \alpha \right| e^{i\Phi}

Der minimalen Unschärfe entspricht im Phasenraum die kleinstmöglichen Fläche, die ein Zustand mindestens ausfüllt. Der Kreis, der in der Abbildung einen kohärenten Zustand repräsentiert, hat somit eine Fläche von $ {\tfrac {\hbar }{2}} $. Die Zeitentwicklung des kohärenten Zustands entspricht einer Rotation des Kreises um den Ursprung des Phasenraums mit Frequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega = \dot\Phi .

Datei:Coherent-state-b.svg
Analoge Darstellung mit Unsicherheiten in Phase und Amplitude

Anstatt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta X_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta X_2 können auch Phasen- und Amplituden-Unschärfen verwendet werden (zweite Abbildung). Dabei ist der Erwartungswert des Teilchenzahloperators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle \alpha | a^\dagger a | \alpha \rangle = \left| \alpha \right|^2 = \bar{n}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Rightarrow |\alpha| = \sqrt{\bar{n}}

Diese Formulierung erklärt anschaulich das Schrotrauschen.

Der Nicht-Orthogonalität kohärenter Zustände entspricht eine Überlappung ihrer Flächen im Phasenraum. Denn anders als es die Abbildungen zunächst vermuten lassen, sind die Flächen nicht scharf begrenzt, sondern klingen gaußförmig ab. Der Kreisrand in den Abbildungen entspräche dann etwa der Halbwertsbreite.

Die Darstellung im Phasenraum hilft z. B. beim Vergleich von gequetschtem Licht mit kohärenten Zuständen. Dieses entspricht im Phasenraum einer Ellipse, die aus dem Kreis des kohärenten Zustands hervorgeht, indem eine der beiden Unsicherheiten verkleinert wird. Weil die Fläche im Phasenraum aber nicht kleiner werden kann, geht das „Quetschen“ mit einer entsprechend größeren Unsicherheit in der anderen Quadratur einher.

Ferner macht die Phasenraum-Darstellung den Effekt des Verschiebungsoperators $ \operatorname {D} (\alpha ) $ im Fockraum (s. u.) anschaulich klar.

Darstellung im Fockraum

Ein idealer kohärenter Zustand bei der quantenfeldtheoretischen Behandlung der Photonen, Elektronen etc. ist stets eine Überlagerung von Zuständen verschiedener Teilchenzahl, er enthält sogar (verschwindend geringe) Anteile beliebig hoher Teilchenzahl.

In Fock-Raum-Schreibweise (nach Wladimir Alexandrowitsch Fock) ergibt sich der kohärente Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\alpha\rangle als unendliche Linearkombination von Zuständen fester Teilchenzahl (Fock-Zustände) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |n\rangle nach:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\alpha\rangle = e^{-{|\alpha|^2\over2}}\sum_{n=0}^{\infty}{\alpha^n\over\sqrt{n!}}|n\rangle

Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha eine beliebige nichtverschwindende komplexe Zahl, die den kohärenten Zustand vollständig definiert.

Die Wahrscheinlichkeit, eine Besetzung von genau n Teilchen zu messen, ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P(n)= |\langle n|\alpha \rangle|^2 = \frac{|\alpha|^{2n}}{n!}e^{-|\alpha|^2}

Die Verteilung entspricht also der Poisson-Verteilung. Demnach ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\alpha|^2 der Erwartungswert der Besetzungszahl des kohärenten Zustandes.

Der kohärente Zustand kann durch Anwendung eines unitären „Verschiebungsoperators“ $ {\hat {D}}(\alpha ) $ aus dem unbesetzten Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |0\rangle des Systems erzeugt werden (siehe Herleitung):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\alpha\rangle=\hat{D}(\alpha)|0\rangle=\exp{\left(\alpha \hat{a}^\dagger - \alpha^* \hat{a}\right)}|0\rangle

Dabei sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{\hat{a}^\dagger} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{a}\ die Auf- bzw. Absteigeoperatoren des Fock-Zustandes.

Die Übertragung in den Fockraum wurde von Roy J. Glauber entwickelt.

Kohärente Zustände in der Quantenmechanik

Fehler beim Erstellen des Vorschaubildes:
Zeitentwicklung der Wahrscheinlichkeitsverteilung mit Phase (farblich) eines kohärenten Zustands mit α=3.
Datei:Wignerfunction coherent 2.png
Wignerfunktion eines kohärenten Zustands mit α=2 im Phasenraum.

In der 1-Teilchen-Quantenmechanik versteht man unter einem kohärenten Zustand ein Gaußsches Wellenpaket mit reeller Varianz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma^2 . Als weitere Parameter hat es den Erwartungswert q des Ortes und den Erwartungswert p des Impulses. Die normierte Wellenfunktion im Ortsraum in einer Raumdimension lautet:

$ \psi _{q,p}(x)=\pi ^{-1/4}\sigma ^{-1/2}e^{-(x-q)^{2}/2\sigma ^{2}}e^{ipx/\hbar }\qquad \sigma \in \mathbf {R} $

Der entsprechende Ket-Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |q,p\rangle ist definiert durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_{q,p}(x) = \langle x | q,p \rangle

Quasiklassische Eigenschaften

Die Unschärfen von Ort und Impuls sind beim Gaußschen Wellenpaket gegeben durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\Delta q)^2 = \int \psi_{q,p}^*(x) (x-q)^2 \psi_{q,p}(x) \, \mathrm{d}x = \frac{\sigma^2}2 \qquad\qquad
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\Delta p)^2 = \int \psi_{q,p}^*(x) \left(\frac{\hbar}{i}\,\frac{\partial}{\partial x} - p \right)^2 \psi_{q,p}(x) \, \mathrm{d}x = \frac{\hbar^2}{2\sigma^2}

Das Unschärfeprodukt nimmt also den minimalen Wert an:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta q \, \Delta p = \frac{\hbar}2

Auch umgekehrt folgt aus einem minimalen Unschärfeprodukt, dass die Wellenfunktion ein Gaußsches Wellenpaket ist.[2]

Im Limes $ \Delta q\to 0 $ wird das Wellenpaket zu einem Eigenzustand des Ortes, im Limes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta p \to 0 zu einem Eigenzustand des Impulses. Unter „klassischen“ Bedingungen, wenn sowohl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta q als auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta p als klein angesehen werden kann, ist das Gaußsche Wellenpaket näherungsweise ein gemeinsamer Eigenzustand von Ortsoperator und Impulsoperator:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{array}{l} \hat{q}| q,p\rangle = q | q,p\rangle + O(\Delta q) \\ \hat{p}| q,p\rangle = p | q,p\rangle + O(\Delta p) \end{array}

Die Fehler sind von der Größenordnung der Unschärfen, denn als Maß für die Abweichung von der Eigenwertgleichung können gerade die Ausdrücke gelten, die die Unschärfen definieren (s. o.).

Vollständigkeitsrelation

Jedes Wellenpaket lässt sich als Superposition von Gaußschen Wellenpaketen darstellen. Als Operatorgleichung formuliert (Zerlegung der Eins):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \boldsymbol{1} = \int |q,p\rangle \, \langle q,p | ~ \frac{\mathrm{d}q\,\mathrm{d}p}{h}

Dies kann man zeigen, indem man auf beiden Seiten das Matrixelement $ \langle x|\cdots |x'\rangle $ in der Ortsbasis bildet und auf der rechten Seite die Wellenfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_{q,p} sowie die Fourierdarstellung der Deltafunktion benutzt.

Das Plancksche Wirkungsquantum wird auf diese Weise zur Bezugsgröße für klassische Phasenvolumina.

Anwendung: Klassische Zustandssumme

Mit Hilfe der Vollständigkeitsrelation kann die klassische 1-Teilchen-Zustandssumme für die kanonische Gesamtheit in einfacher Weise aus der quantenmechanischen Zustandssumme[3]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z = \operatorname{tr}\,e^{-\beta\hat{H}}

hergeleitet werden. Wenn nämlich die Unschärfen von Ort und Impuls vernachlässigbar und somit die kohärenten Zustände gemeinsame Eigenzustände von Ort, Impuls und Hamiltonoperator sind, gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} Z & = \operatorname{tr} \left( e^{-\beta \hat{H}} \int \frac{\mathrm{d}q \, \mathrm{d}p}{h}| q,p \rangle \langle q,p | \right)\\ & = \int \frac{\mathrm{d}q \, \mathrm{d}p}{h} \, e^{-\beta H(q,p)} \operatorname{tr} \, | q,p \rangle \langle q,p |\\ & = \int \frac{\mathrm{d}q \, \mathrm{d}p}{h} \, e^{-\beta H(q,p)} \end{align}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{tr} \, |\phi\rangle \langle\psi| = \langle\psi|\phi\rangle benutzt wurde.

Eine genauere Argumentation mit oberen und unteren Schranken findet sich in[4].

Herleitung

Im Folgenden wird gezeigt, dass die kohärenten Zustände Eigenzustände des Vernichtungsoperators sind:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{a}\left|\alpha\right\rangle =\alpha\left|\alpha\right\rangle

Die Fockzustände $ |n\rangle $ bilden ein vollständiges Orthonormalensystem, also kann man jeden Zustand nach ihnen entwickeln:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\alpha\rangle=\sum\limits _{n=0}^{\infty}|n\rangle\underbrace{\langle n|\alpha\rangle}_{b_{n}}=\sum\limits _{n=0}^{\infty}b_{n}|n\rangle

Nun betrachtet man die linke Seite der Eigenwertgleichung, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{a}|n\rangle=\sqrt{n}|n-1\rangle . Zudem gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{a}|0\rangle=0 , weswegen der Laufindex der Summe nach dem zweiten Gleichheitszeichen auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n=1 erhöht wird:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{a}|\alpha\rangle=\sum\limits _{n=0}^{\infty}b_{n}\hat{a}|n\rangle=\sum\limits _{n=1}^{\infty}b_{n}\sqrt{n}\,|n-1\rangle=\sum\limits _{n=0}^{\infty}b_{n+1}\sqrt{n+1}\,|n\rangle

Das Vertauschen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat a und der unendlichen Summe (und damit einer Grenzwertbildung) ist keinesfalls trivial, denn $ {\hat {a}} $ ist selbst im Fall des harmonischen Oszillators ein unstetiger Operator. Im Fall des harmonischen Oszillators lässt sich dieser Schritt begründen, im Allgemeinen ist hier jedoch Vorsicht geboten!

Die rechte Seite der Eigenwertgleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha|\alpha\rangle=\sum\limits _{n=0}^{\infty}b_{n}\alpha|n\rangle

Aus der Gleichheit beider Seiten gewinnt man eine Rekursionsbeziehung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b_{n+1}\sqrt{n+1}=b_{n}\alpha

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b_{n}=\frac{\alpha}{\sqrt{n}}\,b_{n-1} \Rightarrow b_n=\frac{\alpha^{n}}{\sqrt{n!}}\,b_{0}

Nun nutzt man die Normierungsbedingung der kohärenten Zustände aus, um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b_0 zu bestimmen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1=\langle\alpha|\alpha\rangle=\sum\limits _{m,n=0}^{\infty}b_{m}^{*}b_{n}\underbrace{\langle m|n\rangle}_{\delta_{mn}}=\sum\limits _{n=0}^{\infty}|b_{n}|^{2}=\sum\limits _{n=0}^{\infty}\frac{|\alpha|^{2n}}{n!}|b_{0}|^{2}=e^{|\alpha|^{2}}|b_{0}|^{2}

Radizieren liefert $ b_{0} $, wobei eine komplexe Phase zu null und somit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b_0 reell gewählt wird:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b_{0}=e^{-\frac{1}{2}|\alpha|^{2}}

Dies ergibt eingesetzt in obige Entwicklung die Darstellung der kohärenten Zustände:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\alpha\rangle=\sum\limits _{n=0}^{\infty}b_{n}|n\rangle=b_{0}\sum\limits _{n=0}^{\infty}\frac{\alpha^{n}}{\sqrt{n!}}|n\rangle=e^{-\frac{\left|\alpha\right|^{2}}{2}}\sum\limits _{n=0}^{\infty}\frac{\alpha^{n}}{\sqrt{n!}}\left|n\right\rangle

Nutzt man noch aus, dass die Fockzustände Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |n\rangle sich durch Anwendung des Erzeugungsoperators aus dem Vakuumzustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |0\rangle ergeben $ \left|n\right\rangle =(n!)^{-1/2}\,({\hat {a}}^{\dagger })^{n}\left|0\right\rangle $ und dann noch dass die Anwendung des Vernichtungsoperators auf den Vakuumzustand eine Null produziert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{a}|0\rangle=0 bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e^{-\alpha^{*}\hat{a}}\left|0\right\rangle =\left|0\right\rangle , dann erhält man:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left|\alpha\right\rangle =e^{-\frac{\left|\alpha\right|^{2}}{2}}\sum\limits _{n=0}^{\infty}\frac{\alpha^{n}}{\sqrt{n!}}\frac{\left(\hat{a}^{\dagger}\right)^{n}}{\sqrt{n!}}\left|0\right\rangle =e^{-\frac{\left|\alpha\right|^{2}}{2}}e^{\alpha\hat{a}^{\dagger}}\left|0\right\rangle=e^{-\frac{\left|\alpha\right|^{2}}{2}}e^{\alpha\hat{a}^{\dagger}}e^{-\alpha^{*}\hat{a}}\left|0\right\rangle

Mit der Baker-Campbell-Hausdorff-Formel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e^{\hat{A}}e^{\hat{B}}=e^{\hat{A}+\hat{B}}e^{[\hat{A},\hat{B}]/2} kann man das Produkt der beiden Exponentialfunktionen zusammenfassen, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [\hat{a}^{\dagger},\hat{a}]=-1 :

$ e^{\alpha {\hat {a}}^{\dagger }}e^{-\alpha ^{*}{\hat {a}}}=e^{\alpha {\hat {a}}^{\dagger }-\alpha ^{*}{\hat {a}}}e^{-\alpha \alpha ^{*}[{\hat {a}}^{\dagger },{\hat {a}}]/2}=e^{\alpha {\hat {a}}^{\dagger }-\alpha ^{*}{\hat {a}}}e^{|\alpha |^{2}/2} $

Somit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left|\alpha\right\rangle =e^{\alpha\hat{a}^{\dagger}-\alpha^{*}\hat{a}}\left|0\right\rangle=\hat{D}\left|0\right\rangle

Siehe auch

Einzelnachweise

  1. E. Schrödinger, Der stetige Übergang von der Mikro- zur Makromechanik. In: Die Naturwissenschaften 14 (1926) 664–666. doi:10.1007/BF01507634.
  2. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantenmechanik, Band 1, de Gruyter-Verlag, Abschnitt 3.8
  3. B. H. Bransden, C. J. Joachain, Quantum Mechanics, Prentice Hall, section 14.4
  4. J. R. Klauder, B.-S. Skagerstam, Coherent States --- Applications in Physics and Mathematical Physics, World Scientific, 1985, Abschnitt I.6

Literatur

  • R. J. Glauber, Phys. Rev. 131, 2766, 1963

Weblinks